
Protein Engineering as Stochastic, Adversarial Bandit
Problem with Domain Model Likelihoods

Richard Michael
Department of Computer Science

University of Copenhagen
richard.michael@di.ku.dk

Abstract

The biochemical discovery and engineering process is an online learning problem
and can be viewed as a multi-armed bandit problem. We show the initial discrep-
ancy between the naive treatment of protein optimization in this framework and how
to constrain it to obtain a feasible action-space. This brings learning-theoretical
results to the optimization in biochemical engineering and allows us to apply bandit
algorithms in this domain. Lastly, we propose a modification of a state of the art
best-of-both-worlds algorithm to be used to optimize a protein engineering task
and provide empirical results accounting for delays of observations.

1 Introduction

Protein engineering is a noisy optimization problem starting from one or multiple reference sequences
with a particular fitness trait and iteratively modifying the sequence of amino acids to improve that
trait. The design decisions come with little guarantees that the modifications at each step ultimately
yield the improvement we are looking for. The potential design space is vast and the number of
functional variants of a protein is vanishingly small (1). Furthermore, the measurements taken in
the wet-lab come with experimental noise from the type of assay used to measure the properties of
protein sequences (2; 3; 4). In contrast to in-silico measurements through computational oracles,
which are proxies for downstream tasks of interest, ie. Rosetta for stability (5) or AlphaFold 3 for
structure and interaction prediction (6).

Figure 1: Overview for protein se-
quence optimization. i) Given a ref-
erence sequence of amino acids we
determine the mutation to make (ac-
tions a), which we can sample from
a prior model (ϕ). We measure the
function values either computation-
ally (f(·)) or in-vitro. ii) Losses (un-
constrained) can vary based on the
system measured (ie. two different
RFP proteins), the noise level of the
experiments, and the relative distance
to the starting point ie. number of
mutations added.

Recent advances in domain models for proteins such as protein language models (PLMs) (7; 8; 9; 10)
and datasets for benchmarking (11; 12) promise applicable models to optimize protein sequences and
selection criteria for models given some tasks of interest. The moment we decide to run a campaign

Preprint. Under review.

where decisions are based on previous iterations and the results are used to fit a model, we have left
the offline learning domain and have to solve an online learning problem. Current active learning
optimization approaches (13; 1) then propose a design space of k possible mutants per iteration, at
which point we have to consider the trade-off between potentially collecting more data or exploiting
already observed effects of the mutants. Thus, the experimentalist may be inclined to ask: "How
many experiments should we run (and how many replicates) until we know that the campaign has
been successful?"
In contrast to applied machine learning stand recent advances in learning-theoretic online learning
algorithms yielding optimality in stochastic, adversarial, and corrupted settings with or without
delay of observations (14; 15; 16). The applied researcher concerned with optimizing biochemical
sequences may be inclined to ask if those algorithms warrant application and if they are suitable for
empirical assessment. Simply applying learning-theoretical algorithms to optimization problems
can give us worst case guarantees and bounds to estimate performances, but naively applying them
to tasks like biochemical engineering campaigns can give problems such as: vacuous bounds, too
large search spaces, ill-defined budgets. Furthermore if the returns of actions are delayed (ie. running
experiments) bandit algorithms may be difficult to apply. To address some of these issues we present
the following results:

1. we examine which learning-theoretical framework to select given the considerations of a
protein engineering campaign,

2. we show how to effectively constrain the problem to be able to treat it as a bandit problem
using prior domain models,

3. we construct an in-silico multi-fidelity delayed feedback experiment mirroring a protein
engineering campaign from a set of established computational oracles,

4. we modify and apply an existing state of the art learning-theoretic algorithm, to select design
actions based on computed relative likelihoods respective a starting sequence.

1.1 Related Work

Using machine learning models in a protein engineering campaigns has been studied by (3; 17; 18;
19; 20; 13) amongst others. (21; 1) present protein engineering as an online learning problem, the
latter testing empirically on a combinatorically complete enzyme optimization task with multiple
objectives. While sampling protein sequences for design has been investigated by (22) and de novo
modeling by (23) with (24) investigating protein language models.
To the best of our knowledge none of these previous investigations account for learning-theoretic
optimal algorithms (as presented in (25)) or explore the divergence between theoretical guarantees
and empirical observations.

2 Results

We present how protein engineering relates to a multi-armed bandit problem (Section 2.1), why initial
bounds can become vacuous (Section 2.2) and how to resolve this with prior information to constrain
our action space, structure the evaluation budget and delayed returns such that we can apply this
algorithm class (Section 2.3); leading us to a practical FTRL algorithm (Section 2.4).

2.1 Proteins are multi-armed bandits in stochastic, adversarial environments

When modifying a protein sequence we can only observe a limited number of candidates. During
an engineering campaign let a mutation at one or multiple sites of the sequence be the action (later
It), followed by a measurement either in-vitro (eg. a screening assay) or in-silico (eg. a biophysical
simulator) - see Fig. 1. As we do not have perfect information available and only observe a limited
number from the set of available actions, this can be viewed a multi-armed bandit setting; given that
some prior assumptions are met (25). The arms or bandits in this case are the protein designs to make,
the observations of which can be stochastic, adversarial or both. The moment we have selected a
design for measurement a loss comes with it, which may take some time to actually observe.1

1For simplicity we consider the loss the squared residual to an optimal design, however other losses can be
considered.

2

Stochastic environments Laboratory measures are inherently stochastic, for example deep muta-
tional scan (DMS) experiments are noisy in their return values. A different set of uncertainties, come
with computational oracles which is either a non-deterministic oracle or the (biophysical) simulator
is only approximately correct for a downstream task.

Adversarial environments There exist different cases of adversarial losses during a protein opti-
mization campaign. First, the more we mutate a protein sequences, the more the later changes are
affected by previous trials. When we apply too many modifications we further have to account for
the interaction of the proposed changes and the existing configuration. For example introducing all
single variants can be argued to be sufficiently close to the wild-type for a faithful label distribution.
However mutating multiple amino acids, especially in functional sites of a protein can be argued to
completely change the label distribution (ie. fitness values). Secondly, during a campaign a protein
may be optimized respective different traits, such as thermal stability and yield (1). During the
individual rounds one trait may be preferred over the other, such that the losses that are computed
change between trials, appear adversarial to us.

Delayed Feedback During an engineering campaign, not all data may be observed at once. A
common setup includes running computational simulations or fitting surrogate models to a subset
of observations (21; 13; 1). An experimental batch is assembled and the true function values only
become available at the next iteration, or even later if the experiments are time-consuming. This poses
the question how large a maximal delay is allowed to be and what proportion of our designs require
labels before entering the next round of experiments; finding a trade-off between rapid low-fidelity
observations and delayed high-fidelity observations.

Best of both worlds Given noisy measurements for our true function values and given potentially
changing losses, during optimization, an optimal algorithm has to address both worlds. In the learning
literature this is known as a best-of-both-worlds algorithm (BOBW) that addresses both stochasticity
of the observations and the adversarial component (25).
The selection of the algorithm is always environment dependent. If there is no adversarial component
an algorithm for stochastic environments can be used such as (regularized) Follow-The-Leader
(FTRL). If there is no stochasticity but change of domains or target properties over time such that
losses are adversarial we may choose for example an Exp3 algorithm (see (25) for both). One state
of the art example that does well across both environments is the BOBW FTRL algorithm in (14),
which we investigate in Section 2.4.

2.2 Naive combinatorial actions yield vacuous bounds

A protein sequence of length L can take |AA| − 1 alternative configurations per site, where AA
is the set of natural occurring amino acids. Naturally, for m (multiple) mutants this becomes(
L
m

)
× (|AA| − 1)m, which is > 109 possible actions for triple mutants if L ≥ 150 – a prohibitively

large space from which to choose one design (action It) (see appendix Fig. 1). The worst-case bounds
in this case are vacuous.

2.3 Constraining the action-space

Not all proposals are sensible and some may be infeasible or highly unlikely. Given that a domain
model exists that has learned the occurrence of valid amino acid sequences (ie. esm-2, esm-3, etc.)
we propose to leverage such models as prior knowledge to limit our action space sufficiently yielding
tighter bounds and improved learning behavior.

Proposition: Sample a fixed number of actions from a probability-simplex derived from prior domain
model (parameterized by ϕ) likelihoods respective the ∆ to a reference.

3

Specifically we propose a probability simplex over the set of amino acids AA of the protein se-
quence(s) of length L to optimize.2

Pϕ :=

{
p ∈ [0, 1]L×AA|p ≥ 0 ∧ ∀l ∈ L :

AA∑
aa

pl,aa = 1

}
. (1)

We note that this can be biased to sampling the wild-type (WT) or the most likely sequence under
that model – preserved as the fittest sequence. To select an action at a likely position we therefore
propose the action simplex as the difference to the WT.: Let X(WT) be a wild-type protein sequence:

∆
(WT)
ϕ := Pϕ − Pϕ1[X = X(WT)] P∆(WT)

ϕ := ∀l ∈ L :
∆

(WT)
ϕ,l∑

aa∈AA ∆
(WT)
ϕ,l,aa

(2)

This is the difference between the likelihoods of all available amino acids and the wildtype probabili-
ties, where the indicator 1[X = X(WT)] defines a mask giving us the WT residues in its position -

requiring us to renormalized to obtain valid probabilities. We can now use the simplex P∆(WT)
ϕ to

sample actions of interest and apply our online learning algorithm.

2.4 A prior constrained FTRL algorithm

The proposed algorithm follows Alg.1 in (14) closely. We set K to be the maximum number of
possible designs. Note that the larger the delays (size Dt) and also high noise levels result in
detrimental guarantees (see Supplementary Fig. 3).

Algorithm 1 Practical prior FTRL with Delayed Bandit Tuning ; contributions are in red.

1: Initialize: D0 = 0, budget n, K, prior ϕ, action-simplex P∆(WT)
ϕ , Lobs

1 = 0K

2: {κ}1..K ∼ P∆(WT)
ϕ ▷ sample action-space from prior odds

3: for t = 1, . . . , n do
4: set σt =

∑t−1
s=1 1(s+ ds > t) ▷ remaining observations

5: update Dt = Dt−1 + σt

6: set xt = argminx∈∆κ⟨Lobs
t , x⟩+ Ft(x) ▷ optimal distribution over arms, see Eq. (3)

7: sample It ∼ xt

8: observe (s, ls,Is) for all s that satisfy s+ ds = t

9: L̂obs
t+1 = L̂obs

t +
∑t

s=1 l̂s1(s+ ds = t) ▷ importance weighted losses, see Eq. (4)
10: end for

We further use this algorithm with no delays using a low-fidelity proxy function to assess, the change
in regret and decisions given a lower quality, rapid screening proxy. The same algorithm can be used
to decide between which domain model to query by introducing an outer loop over the available
models: {ϕesm1b, ϕprotT5, ...} and sampling a set of actions from each of the available models to
determine the lowest regret.

2.5 Resolving simplex optimization by stacking bandits

One of the key challenges in Algorithm 1 is the simplex optimization with the Tsallis-Inf regular-
ization: argminx∈∆κ⟨L̂obs

t , x⟩ + Ft(x). The larger the action-space ∆κ, the harder it becomes to
optimize a probability distribution over it, with an optimizer - especially for hundreds to thousand
of proposed designs. We sketch how to resolve this issue in Fig. 2. One possible approach is to
decompose the actions into decisions about positions and residues at that positions, implying the
action (ie. the bandit) is not a particular design anymore, but a design decision instead. First, select
a position, secondly select a candidate for that position. While we are now faced with optimizing
multiple simplices, these are significantly lower-dimensional and reduce the design space. This

2For brevity pl,aa is the probability vector from the probability matrix p ∈ [0, 1]L,AA (the sequence length
by number of amino-acid matrix) such that pl,aa = p[L = l, AA = aa] see Appendix A.5 for a detailed
description.

4

Setting (delay) Regret±SE (↓)

prior FTRL (one) 95.32 ± 0.91
prior FTRL (zero-noisy) 95.52 ± 0.59
prior FTRL (10-zero) 96.93 ± 0.42

Sampling prior 95.88 ± 0.85
Sampling uniform-random 96.06 ± 0.46

Table 1: RFP optimization. We assess pseudo
Regret (across 5 seeds) for d = 1 delays,
noisy instant observations, and observations
in batches of 10 (decreasing delays). Baseline
values are sampling uniformly from the avail-
able designs (sampled with esm-2 likelihoods)
and completely at random (last).

proposed change can treat the sampling of actions It independently or we consider them as a Markov
decision process with dependence on all previous decisions in the hierarchy. Regardless, it requires
us to propagate importance weighted losses during the optimization process, such that we obtain
losses for each decision in the hierarchy. The analysis for this proposal and its realization is out of
the scope of this paper and is left for future work.

Figure 2: Overview for stacking deci-
sions. Depending on the coarseness
of the discretization we can decide
by: i) region (ie. parts of the protein
(active site or not)), ii) positions in a
selected region, iii) amino acids for that
position.

2.6 Optimizing RFP stability with delays and stochasticity

We optimize the protein DsRed protein (RFP, PDB 2VAD) by its stability using the RaSP oracle as
proxy for stability R̂EU ∝ ∆∆G (26).3 We combine the oracle with an RMF functional landscape
(27) implying noisy stability values and change in function the more mutations are proposed. An
oracle function with higher noise serves as a rapid-screening proxy to simulate fast lower fidelity
experiments. Losses are computed as squared residuals against the optimal ∆∆G × |RMF| value
from the available designs. We are given a finite budget of 100 iterations to decide among K = 50
variants with esm2 (650M) as our domain model. Our goal is to learn the optimal design which
corresponds to accumulating the lowest regret (see Eq. (5)) – see Table 1. As baseline we sample
uniformly from all available mutations generated by the prior model or completely at random. We
compare observations without delay, and a batch-delay setting and test what regret and strategy the
noisy rapid observations give us.

3 Discussion

Valid distribution objects In this work we have used PLMs due to their availability and ease of
use, we note however that any model, which yields a valid probability matrix for protein sequences
may be used, for example: HMMs, VAEs, and others (28; 29; 30).

Extensions Our work presents an introductory example of how to apply results from online learning
algorithm research to biochemical sequence optimizations. Protein engineering in practice should
consider batches of observations under different fidelities, and delays, while accounting for different
objectives. To that end, we can consider alleviating the greedy non-myopic approach and instead
should consider batches of candidates per iteration. This requires delayed feedback batched multi-
armed bandits, for which results are an ongoing endeavour.

4 Conclusion

We have demonstrated how formulate a protein engineering task as a bandit problem via constraint
action spaces and how to apply a recent best-of-both world algorithm.

3We assume additive effects of mutations. This implies that the change in function value for a multi-mutant
is the sum of the individual mutation function values.

5

Acknowledgments and Disclosure of Funding

RM is funded by the Danish Data Science Academy, which is funded by the Novo Nordisk Foundation
(NNF21SA0069429) and VILLUM FONDEN (40516). Further funding includes the Pioneer Centre
for AI (DRNF grant number P1).

References
[1] J. Yang, R. G. Lal, J. C. Bowden, R. Astudillo, M. A. Hameedi, S. Kaur, M. Hill, Y. Yue, and

F. H. Arnold, “Active Learning-Assisted Directed Evolution,” July 2024.

[2] K. S. Sarkisyan, D. A. Bolotin, M. V. Meer, D. R. Usmanova, A. S. Mishin, G. V. Sharonov,
D. N. Ivankov, N. G. Bozhanova, M. S. Baranov, O. Soylemez, N. S. Bogatyreva, P. K. Vlasov,
E. S. Egorov, M. D. Logacheva, A. S. Kondrashov, D. M. Chudakov, E. V. Putintseva, I. Z.
Mamedov, D. S. Tawfik, K. A. Lukyanov, and F. A. Kondrashov, “Local fitness landscape of the
green fluorescent protein,” Nature, vol. 533, pp. 397–401, May 2016. Number: 7603 Publisher:
Nature Publishing Group.

[3] P. A. Romero, A. Krause, and F. H. Arnold, “Navigating the protein fitness landscape with
Gaussian processes,” Proceedings of the National Academy of Sciences, vol. 110, pp. E193–
E201, Jan. 2013. Publisher: Proceedings of the National Academy of Sciences.

[4] K. E. Johnston, P. J. Almhjell, E. J. Watkins-Dulaney, G. Liu, N. J. Porter, J. Yang, and F. H.
Arnold, “A combinatorially complete epistatic fitness landscape in an enzyme active site,” June
2024.

[5] K. T. Simons, R. Bonneau, I. Ruczinski, and D. Baker, “Ab initio protein
structure prediction of CASP III targets using ROSETTA,” Proteins: Struc-
ture, Function, and Bioinformatics, vol. 37, no. S3, pp. 171–176, 1999.
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/%28SICI%291097-
0134%281999%2937%3A3%2B%3C171%3A%3AAID-PROT21%3E3.0.CO%3B2-Z.

[6] J. Abramson, J. Adler, J. Dunger, R. Evans, T. Green, A. Pritzel, O. Ronneberger, L. Willmore,
A. J. Ballard, J. Bambrick, S. W. Bodenstein, D. A. Evans, C.-C. Hung, M. O’Neill, D. Reiman,
K. Tunyasuvunakool, Z. Wu, A. Žemgulytė, E. Arvaniti, C. Beattie, O. Bertolli, A. Bridgland,
A. Cherepanov, M. Congreve, A. I. Cowen-Rivers, A. Cowie, M. Figurnov, F. B. Fuchs,
H. Gladman, R. Jain, Y. A. Khan, C. M. R. Low, K. Perlin, A. Potapenko, P. Savy, S. Singh,
A. Stecula, A. Thillaisundaram, C. Tong, S. Yakneen, E. D. Zhong, M. Zielinski, A. Žídek,
V. Bapst, P. Kohli, M. Jaderberg, D. Hassabis, and J. M. Jumper, “Accurate structure prediction
of biomolecular interactions with AlphaFold 3,” Nature, pp. 1–3, May 2024. Publisher: Nature
Publishing Group.

[7] R. Rao, N. Bhattacharya, N. Thomas, Y. Duan, P. Chen, J. Canny, P. Abbeel, and Y. Song, “Eval-
uating Protein Transfer Learning with TAPE,” in Advances in Neural Information Processing
Systems, vol. 32, Curran Associates, Inc., 2019.

[8] A. Elnaggar, M. Heinzinger, C. Dallago, G. Rehawi, Y. Wang, L. Jones, T. Gibbs, T. Feher,
C. Angerer, M. Steinegger, D. Bhowmik, and B. Rost, “ProtTrans: Toward Understanding the
Language of Life Through Self-Supervised Learning,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 44, pp. 7112–7127, Oct. 2022. Conference Name: IEEE
Transactions on Pattern Analysis and Machine Intelligence.

[9] Z. Lin, H. Akin, R. Rao, B. Hie, Z. Zhu, W. Lu, N. Smetanin, R. Verkuil, O. Kabeli, Y. Shmueli,
A. dos Santos Costa, M. Fazel-Zarandi, T. Sercu, S. Candido, and A. Rives, “Evolutionary-scale
prediction of atomic level protein structure with a language model,” preprint, Synthetic Biology,
July 2022.

[10] T. Hayes, R. Rao, H. Akin, N. J. Sofroniew, D. Oktay, Z. Lin, R. Verkuil, V. Q. Tran, J. Deaton,
M. Wiggert, R. Badkundri, I. Shafkat, J. Gong, A. Derry, R. S. Molina, N. Thomas, Y. A. Khan,
C. Mishra, C. Kim, L. J. Bartie, M. Nemeth, P. D. Hsu, T. Sercu, S. Candido, and A. Rives,
“Simulating 500 million years of evolution with a language model,” July 2024.

6

[11] M. Xu, Z. Zhang, J. Lu, Z. Zhu, Y. Zhang, M. Chang, R. Liu, and J. Tang, “PEER: A Compre-
hensive and Multi-Task Benchmark for Protein Sequence Understanding,” Advances in Neural
Information Processing Systems, vol. 35, pp. 35156–35173, Dec. 2022.

[12] P. Notin, A. Kollasch, D. Ritter, L. Van Niekerk, S. Paul, H. Spinner, N. Rollins, A. Shaw,
R. Orenbuch, R. Weitzman, et al., “Proteingym: Large-scale benchmarks for protein fitness
prediction and design,” Advances in Neural Information Processing Systems, vol. 36, 2024.

[13] L. Chen, Z. Zhang, Z. Li, R. Li, R. Huo, L. Chen, D. Wang, X. Luo, K. Chen, C. Liao, and
M. Zheng, “Learning protein fitness landscapes with deep mutational scanning data from
multiple sources,” Cell Systems, vol. 14, pp. 706–721.e5, Aug. 2023.

[14] S. Masoudian, J. Zimmert, and Y. Seldin, “A best-of-both-worlds algorithm for bandits with
delayed feedback,” Advances in Neural Information Processing Systems, vol. 35, pp. 11752–
11762, 2022.

[15] J. Zimmert and Y. Seldin, “An Optimal Algorithm for Stochastic and Adversarial Bandits,”
in Proceedings of the Twenty-Second International Conference on Artificial Intelligence and
Statistics, pp. 467–475, PMLR, Apr. 2019. ISSN: 2640-3498.

[16] J. Zimmert and Y. Seldin, “Tsallis-INF: An Optimal Algorithm for Stochastic and Adversarial
Bandits,” Journal of Machine Learning Research, vol. 22, no. 28, pp. 1–49, 2021.

[17] K. K. Yang, Z. Wu, and F. H. Arnold, “Machine-learning-guided directed evolution for protein
engineering,” Nature Methods, vol. 16, pp. 687–694, Aug. 2019. Publisher: Nature Publishing
Group.

[18] S. Mazurenko, Z. Prokop, and J. Damborsky, “Machine learning in enzyme engineering,” ACS
Catalysis, vol. 10, no. 2, pp. 1210–1223, 2019.

[19] B. L. Hie and K. K. Yang, “Adaptive machine learning for protein engineering,” Current opinion
in structural biology, vol. 72, pp. 145–152, 2022.

[20] C. R. Freschlin, S. A. Fahlberg, and P. A. Romero, “Machine learning to navigate fitness
landscapes for protein engineering,” Current opinion in biotechnology, vol. 75, p. 102713, 2022.

[21] S. Stanton, W. Maddox, N. Gruver, P. Maffettone, E. Delaney, P. Greenside, and A. G. Wilson,
“Accelerating Bayesian Optimization for Biological Sequence Design with Denoising Autoen-
coders,” Tech. Rep. arXiv:2203.12742, arXiv, July 2022. arXiv:2203.12742 [cs, q-bio, stat]
type: article.

[22] J. T. Darmawan, Y. Gal, and P. Notin, “Sampling Protein Language Models for Functional
Protein Design,” Oct. 2023.

[23] P.-S. Huang, S. E. Boyken, and D. Baker, “The coming of age of de novo protein design,”
Nature, vol. 537, no. 7620, pp. 320–327, 2016.

[24] A. Madani, B. Krause, E. R. Greene, S. Subramanian, B. P. Mohr, J. M. Holton, J. L. Olmos,
C. Xiong, Z. Z. Sun, R. Socher, et al., “Large language models generate functional protein
sequences across diverse families,” Nature Biotechnology, vol. 41, no. 8, pp. 1099–1106, 2023.

[25] T. Lattimore and C. Szepesvári, Bandit Algorithms. Cambridge University Press, 1 ed., July
2020.

[26] L. M. Blaabjerg, M. M. Kassem, L. L. Good, N. Jonsson, M. Cagiada, K. E. Johansson,
W. Boomsma, A. Stein, and K. Lindorff-Larsen, “Rapid protein stability prediction using deep
learning representations,” eLife, vol. 12, p. e82593, May 2023. Publisher: eLife Sciences
Publications, Ltd.

[27] J. Neidhart, I. G. Szendro, and J. Krug, “Adaptation in tunably rugged fitness landscapes: the
rough mount fuji model,” Genetics, vol. 198, no. 2, pp. 699–721, 2014.

[28] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison, Biological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acids. Cambridge University Press, 1 ed., Apr. 1998.

7

[29] J. Frazer, P. Notin, M. Dias, A. Gomez, J. K. Min, K. Brock, Y. Gal, and D. S. Marks, “Disease
variant prediction with deep generative models of evolutionary data,” Nature, vol. 599, pp. 91–95,
Nov. 2021. Number: 7883 Publisher: Nature Publishing Group.

[30] P. M. Notin, L. Van Niekerk, A. W. Kollasch, D. Ritter, Y. Gal, and D. Marks, “TranceptEVE:
Combining Family-specific and Family-agnostic Models of Protein Sequences for Improved
Fitness Prediction,” preprint, Genetics, Dec. 2022.

[31] A. Rives, J. Meier, T. Sercu, S. Goyal, Z. Lin, J. Liu, D. Guo, M. Ott, C. L. Zitnick, J. Ma, and
R. Fergus, “Biological structure and function emerge from scaling unsupervised learning to
250 million protein sequences,” Proceedings of the National Academy of Sciences, vol. 118,
p. e2016239118, Apr. 2021. Publisher: Proceedings of the National Academy of Sciences.

A Supplementary Material

A.1 Availability

An implementation of Algorithm 1, testing-suite and black-box library is available under the MIT-
license and will be made available upon acceptance.

A.2 Implementation and Availability

We use the protein oracles (RaSP, RMF) from 4 (available under MIT license) as black-box
functions to optimize. We use esm2 under MIT License. All code to obtain all results and figures
will be made available upon acceptance.

A.3 Combinatorial Space

1 2 3 4
number mutations

103

105

107

ch
oi

ce
s

Positional
L=150
L=200
L=250
L=300

1 2 3 4
number mutations

102

103

104

105

Mutational

1 2 3 4
number mutations

104

106

108

1010

1012

1014
Positions x Mutational

Supplementary Figure 1: Number of available choices available during protein engineering given
sequences of different lengths (L) given number of mutations to make (x-axis) for positions (left),
mutations (regardless of position) (middle), and mutations at positions (right).

A.4 Algorithm Details

We use the Tsallis entropy regularizer exactly as defined in Eq. 1 of (14):

Ft(x) := −2η−1
t

(∑
i∈K

√
xi

)
+ γ−1

t

(∑
i∈K

xi(log xi − 1)

)
(3)

which in practice this requires a small epsilon term such that the RHS log term can be calculated.
The losses are importance weighted losses as proposed in (14):

L̂obs
t =

t−1∑
s=1

l̂s1(s+ ds < t) l̂t,i =
lt,i1(It = i)

xt,i
(4)

4Library name censored to preserve anonymity of the authors and will be made available upon acceptance.

8

Empirical evaluation includes the pseudo-regret, which is defined as the expected cumulative sum of
the loss occurred against the best loss in hind-sight.

R̄egT = E

[
T∑

t=1

(lt,It − lt,i∗T)

]
(5)

Losses are bounded square losses between the best possible observation y∗ ∈ R and the prediction
ŷ ∈ R ensuring that l ∈ [0, 1], the slope is determined by constant c ∈ R+:

l :=
(y∗ − ŷ)2

(y∗ − ŷ)2 + c
(6)

.

A.5 Exact likelihood computations

To obtain likelihood estimates for protein sequences via esm-2 we follow the wt-marginal approach
described in the appendix of (31). Specifically we compute for all positions the masked likelihoods
from a sequence and computing the last-layer softmax on the logits of a forward pass. Given a
sequence X and with masking at position i as X¬i, the logits of the last-layer as zi given AA tokens
(ie. amino acids), for all positions i:

P (Xi|X¬i) =
exp(zi)∑

a∈AA exp(za)
(7)

A.6 FTL in stochastic environments

One fundamental result is that FTL in stochastic environments achieves:

RT = O
(
min

{
logN

∆min
,
√
T logN

})
(8)

given N models to choose from, and stochastic observations from a distribution s.t. loss lt,i is
independent for all t ∈ T and with ∆i := E[lti]− E[lti∗] the minimal delta to the optimal ∆min =
mini∈N{i∗} ∆i.

This is linear in adversarial environments and not optimal (25).

A.7 Hedging on models

How to achieve better than linear regret in adversarial environments? Learn a weighting across the
selection of algorithms. At each iteration, after observing the losses update the weights such that
wt+1,i = wti + exp(−ηlti)

A.8 Hedging with entropy regularization

Given Shannon entropy H and the probability simplex over K actions ∆K

pt ∈ argmin
p∈∆

{
η

t−1∑
s=1

⟨ls, p⟩ −H(p)

}
(9)

decomposes into a stability term (LHS) and regularizing penalty term (RHS) - see Ch. 28 in (cf.
Chapter 28 Alg. 16 in (25)).

A.9 Visualization regret bounds

A.10 Additional result figures

9

0 25 50 75 100

T

100

101

102

103
R
t
≤

Stochastic

FTL N=2

BOBW N=2

FTL N=3

BOBW N=3

FTL N=4

BOBW N=4

FTL N=4

BOBW N=4

FTL N=10000

BOBW N=10000

0 25 50 75 100

T

100

101

102

103

Adversarial
Hedge N=2

BOBW N=2

Hedge N=3

BOBW N=3

Hedge N=4

BOBW N=4

Hedge N=10000

BOBW N=10000

Supplementary Figure 2: Visualization of pseudo-regret bounds in the stochastic and adversarial
setting, given N actions available over 100 iterations, this visualizes the worst-case upper bound.

0

10

20

30

40

50

ac
tio

ns

delay = zero delay = one delay = zero-noisy

0.
0

0.
01

0.
03

0.
05

0.
08

0.
09 0.

1
0.

28 0.
3

0.
5

0.
54

0.
63

0.
68

0.
82

0.
86

0.
87

0.
89 0.

9
0.

91
0.

92
0.

93
0.

94
0.

95
0.

96
0.

97
0.

98
0.

99 1.
0

losses

0

10

20

30

40

50

ac
tio

ns

delay = batched

0.
0

0.
01

0.
03

0.
05

0.
08

0.
09 0.

1
0.

28 0.
3

0.
5

0.
54

0.
63

0.
68

0.
82

0.
86

0.
87

0.
89 0.

9
0.

91
0.

92
0.

93
0.

94
0.

95
0.

96
0.

97
0.

98
0.

99 1.
0

losses

delay = uniform

0.
0

0.
01

0.
03

0.
05

0.
08

0.
09 0.

1
0.

28 0.
3

0.
5

0.
54

0.
63

0.
68

0.
82

0.
86

0.
87

0.
89 0.

9
0.

91
0.

92
0.

93
0.

94
0.

95
0.

96
0.

97
0.

98
0.

99 1.
0

losses

delay = uniform-random

Supplementary Figure 3: Losses observed given actions taken. We note that the majority of losses are
between [0.7, 0.9] indicating that a better bounding function can be found for this particular problem.
Note that the actions are shuffled between the seeded runs, which implies that the actions with the
lowest loss are the same design with a different index per seed.

10

	Introduction
	Related Work

	Results
	Proteins are multi-armed bandits in stochastic, adversarial environments
	Naive combinatorial actions yield vacuous bounds
	Constraining the action-space
	A prior constrained FTRL algorithm
	Resolving simplex optimization by stacking bandits
	Optimizing RFP stability with delays and stochasticity

	Discussion
	Conclusion
	Supplementary Material
	Availability
	Implementation and Availability
	Combinatorial Space
	Algorithm Details
	Exact likelihood computations
	FTL in stochastic environments
	Hedging on models
	Hedging with entropy regularization
	Visualization regret bounds
	Additional result figures

