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Abstract

Efficient protein design relies on properties of protein variants and plays a major

role in the development of bio-technical solutions or pharmacological research. The

protein-sequence space is vast, and experimental assessments can be expensive and

timely. Therefore, efficient computational methods are required to guide experimental

research and derive additional insights in protein design. In this work we integrate two

state of the art approaches: the Gaussian Process (GP) based mGPfusion method and

the sequence-alignment (VAE) based Deep Sequence method [38, 68]. We propose two

novel approaches to incorporate the signal of a protein family latent representation into

a GP regression: (1) by adding the log-ratio of the evidence lower bound as in-silico

data and (2) by computing a covariance function from the VAE’s latent representation.

We show that mGPfusion is applicable to a range of protein property predictions, apart

from thermodynamic stability, while accounting for noise in the data and epistemic

uncertainties. We propose a covariance function that uses the information from

learned representations, which lets us derive a VAE-protein-specific substitution matrix.

The results of this work suggest: that (1) adding a transformed log-likelihood ratio,

can improve property predictions, (2) a numerically stable covariance function, can

compute log-likelihoods for protein sequences with respect to individual residues from

the underlying data and representation. Finally, we evaluate experimentally, how the

signal from a latent representations affects GP model predictions.

iii



Contents

1 Introduction 1

1.1 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 4

2.1 Protein Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Substitution Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3 Computational Models for Protein Property Prediction . . . . . . . . . 6

2.4 Gaussian Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4.1 Gaussian Process Regression . . . . . . . . . . . . . . . . . . . . 7

2.4.2 Kernels and Covariance Functions . . . . . . . . . . . . . . . . . 8

2.4.3 Predictive GPs for Protein Variants . . . . . . . . . . . . . . . . 9

2.5 The Deep Sequence Method . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 The Variational Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . 10

2.6.1 VAE Definition and Latent Approximation . . . . . . . . . . . . 10

2.6.2 The Evidence Lower Bound . . . . . . . . . . . . . . . . . . . . 13

2.6.3 Def.: Jensen’s Inequality . . . . . . . . . . . . . . . . . . . . . . 14

3 Methods 15

3.1 VAE-derived Likelihoods as Input . . . . . . . . . . . . . . . . . . . . . 15

3.2 Hyperparameters and Model Selection . . . . . . . . . . . . . . . . . . 15

3.2.1 Models and Training . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.2 Sequence Weighting . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.3 Bayesian Regression Scaling . . . . . . . . . . . . . . . . . . . . 17

3.3 Optimizing the VAE Architecture . . . . . . . . . . . . . . . . . . . . . 18

3.4 The Making of a Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.1 Deriving a Substitution Matrix from an Embedding . . . . . . . 18

3.4.2 The Encoder-Residue Corollary . . . . . . . . . . . . . . . . . . 19

3.4.3 Definition Normalizing Constant px¬i . . . . . . . . . . . . . . . 21

3.4.4 Introducing Numerical Stability . . . . . . . . . . . . . . . . . . 21

3.4.5 S-Matrix Normalization . . . . . . . . . . . . . . . . . . . . . . 23

3.4.6 The VAE-based Covariance Function . . . . . . . . . . . . . . . 24

iv



3.4.7 The Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . 25

4 Results 26

4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 VAE Representations as Clusters . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Experimental Case-studies . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.1 Including the ∆ELBO . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.2 Evaluating the Covariance Function and DES-Kernel . . . . . . . 36

4.3.3 Deriving a Substitution Matrix Equivalent . . . . . . . . . . . . 37

4.4 Benchmark Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Discussion 43

5.1 Limitations of the Conducted Case-Studies . . . . . . . . . . . . . . . . 43

5.1.1 Cross-Validations for Proteins . . . . . . . . . . . . . . . . . . . 43

5.1.2 Impact of Assessed Metrics . . . . . . . . . . . . . . . . . . . . . 44

5.1.3 Why the sum of log-likelihoods is not a good assessment with

respect to the structure of the protein . . . . . . . . . . . . . . . 45

5.2 Review on the VAE Work . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2.1 VAE Latent Information . . . . . . . . . . . . . . . . . . . . . . 46

5.2.2 Assessing the Effect of Different Priors . . . . . . . . . . . . . . 47

5.2.3 Changes in ELBO are Uninformative . . . . . . . . . . . . . . . 47

5.3 Kernel Function Likelihoods and their Interpretation . . . . . . . . . . 48

5.3.1 Why We don’t get a BLOSUM Matrix . . . . . . . . . . . . . . . 48

5.4 Research Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.4.1 Enabling Learning on Problematic Sequence Alignments . . . . 50

5.4.2 Quantifying Distances in VAE-Space . . . . . . . . . . . . . . . . 50

5.4.3 Fisher-Kernel Covariance Functions . . . . . . . . . . . . . . . . 50

5.4.4 Potential in Advanced MKL . . . . . . . . . . . . . . . . . . . . . 51

5.4.5 Combatting Complexity . . . . . . . . . . . . . . . . . . . . . . 51

5.4.6 Fourier Transform for Kernel Analysis . . . . . . . . . . . . . . . 51

5.5 Approximate Models break Closed-form GP Computations . . . . . . . 52

6 Conclusion 53

7 Supplementary Information 55

7.1 Metrics for Assessing Predictions . . . . . . . . . . . . . . . . . . . . . 55

7.2 Method and Implementational Details . . . . . . . . . . . . . . . . . . 55

7.3 Multiple Sequence Alignment . . . . . . . . . . . . . . . . . . . . . . . 56

7.4 mGP Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.5 VAE Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

v



7.6 The Vectorized Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.7 S-Matrix Additions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.7.1 Original Substitution Matrices . . . . . . . . . . . . . . . . . . . 60

7.7.2 Outer Product of Random Normal Vector . . . . . . . . . . . . . 61

7.8 DES-Kernel Additions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.9 Results over Positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.10 Additional Benchmark Results . . . . . . . . . . . . . . . . . . . . . . . 65

7.11 Individual Predictions over Positions . . . . . . . . . . . . . . . . . . . 67

Bibliography 69

vi



List of Figures

3.1 Contribution of the VAE-architecture in the proposed kernel function. . . 21

4.1 The workflow for mGP and proposed methods. . . . . . . . . . . . . . . 27

4.2 Available protein data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 VAE two dimensional latent representation. . . . . . . . . . . . . . . . . 31

4.4 ∆ELBO correlates with experimental measurements. . . . . . . . . . . . 33

4.5 Bayesian Regression of ∆ELBO values. . . . . . . . . . . . . . . . . . . . 35

4.6 Covariance function values for experimental variants. . . . . . . . . . . . 37

4.7 Position-specific substitution matrix. . . . . . . . . . . . . . . . . . . . . 39

4.8 Performance over positional results for position level CV. . . . . . . . . . 42

4.9 Selected individual predictions from position-level CV. . . . . . . . . . . 42

7.1 22-29 PAM and BLOSUM45 matrices. . . . . . . . . . . . . . . . . . . . . 60

7.2 Matrix obtained from a random normal vector. . . . . . . . . . . . . . . . 61

7.3 Substitution Matrix derived from MSA data. . . . . . . . . . . . . . . . . 62

7.4 Distribution over covariance function values. . . . . . . . . . . . . . . . . 63

7.5 Results over positions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.6 Overall predictions from 25%, 50%, 100% CV runs. . . . . . . . . . . . . 65

7.7 Individual Predictions per Protein. . . . . . . . . . . . . . . . . . . . . . 67

vii



List of Algorithms

1 DES-KERNEL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 LIKELIHOOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

viii



Abbreviations

CV Cross-validation. 40

ELBO Evidence Lower Bound. 11

EM Expectation Maximization. 12

GPs Gaussian Processes. 6

KLD Kullbach-Leibler-Divergence. 12

MCMC Markov Chain Monte-Carlo. 34

MKL Multiple Kernel Learning. 9

MSA Multiple Sequence Alignment. 10

MSE Mean-Squared Error. 43

NN Neural-Network. 11

NUTS No U-Turn Sampler. 34

SGD Stochastic Gradient Descent. 13

VAE Variational Auto-Encoder. 10

WT Wild Type. 4

ix



Nomenclature

S Substitution Matrix. 5

∆∆G ∆ of change in Gibbs-free energy for protein unfolding. 4

p.s.d. positive semi-definite. 24

i.i.d. independent and identically distributed. 7

x



1Introduction

Proteins serve a multitude of biological functions and are relevant to the development

of bio-technological solutions, industrial enzymes or in pharmacological research [48].

Determining thermodynamic stability and functional properties of proteins using com-

putational methods is an unsolved challenge. Generally, the function of a protein is

defined by its fold, and three-dimensional shape, which is largely determined by the

underlying amino-acid sequence [5, ch. 3]. At its most basic, a protein is made up of

20 common amino-acid monomers and contains functional groups. This gives rise to

a highly variable range of functional and structural properties. Some structures are

rigid, some are highly flexible, some are non-polar and bind to membranes and some

bind to each other in dimers, trimers and beyond. The proteins and their functions

are selected for in the function that they serve in the respective environment of the

organism. Variations in their sequence can affect structure and functional properties of

the protein [91, 2].

An abundance of methods to determine a protein’s structure, fold and function, have

been developed. These include experimental methods, such as mutagenesis studies [37,

35, 3], and computational means, such as molecular dynamics simulations [49, 61].

The difficulty of computational methods arises from the fact that protein space is a vast

problem domain given the sheer amount of possible combinations of amino-acids, their

folds and resulting arrangements [33]. Therefore we have to rely on computational

models in order to limit protein candidates. Specifically, the development of efficient

computational methods has been intently researched over the previous years with the

aim of guiding experimental research [11, 26, 62, 15].

Previous research shows that computational predictions can capture a general predic-

tive trend but fail to make explicit predictions [41]. Current state of the art methods

have made significant advances in the prediction of protein properties from sequence

variants. We can distinguish the current state of research in the field of protein pre-

dictive models broadly into two approaches: unsupervised learning, e.g. the Deep
Sequence model [68] and supervised learning e.g. the mGPfusion method [38].

This work investigates the two state of the art computational methods and provides an

overview and background in sections 2.5 and 2.4.3.

Predictions by the Deep Sequence model are among the current state of the art [50],

yet they: (a) lack direct applicability in protein design because the model outputs

constitute a predictive trend with respect to the latent representation rather than a

protein property value, (b) they do not account for the protein’s structure explicitly or

any experimental observations. Lastly, (c) predictions from this method lack certainty

1



estimates. On the other hand, the mGPfusion method, is an example of a probabilistic

method that provides uncertainty estimates with its predictions [38, 90]. Drawbacks

to this method are: (d) in its original form it has been shown to perform only on

thermodynamic stability, (e) the method does not utilize information from the protein’s

family, and previous investigations suggest that (f) multiple kernel learning in this

context, may be sub-optimal (see section 2.4.3 and table 7.2).

This work addresses these issues by, (a) building a transformation function conditioned

on experimental observations to transform Deep Sequence predictions into in-silico

values in the range of protein properties of interest. We incorporate the in-silico data,

suggested to capture protein-family information (e) into the mGPfusion workflow

which (b) does take into account protein structure information. The predictions made

from the Gaussian Process regression (see Section 2.4) do provide (c) uncertainty esti-

mates. The experimental case-studies that we conduct, show that (d) the mGPfusion

method is applicable to more than thermodynamic stability, like e.g. growth factors.

Lastly, we propose a novel kernel function (f) to quantify relatedness of mutational

variants through the latent representation of a Variational Auto-Encoder (see Section

2.6) and verify it experimentally 4.4.

1.1 Research Questions

The aim of this thesis is, to integrate the Deep Sequence approach into mGPfusion

and make improvements upon either model. This thesis will address the following

questions:

1. Is it possible to outperform a VAE architecture to predict protein properties

by combining experimental observation, structure information and the latent

representation through Gaussian Processes regression?

2. Is it possible to outperform a state of the art GP-based method by incorporat-

ing information based on the VAEs latent representation, trained on Multiple

Sequence Alignments?

1.2 Research Hypotheses

With reference to the reported results in [68, 38] my initial hypotheses are:

1.1 Research Questions 2



1. that adding in-silico information derived from a VAE improves performance

compared to the mGP workflow,

2. that deriving a covariance function from a latent representation improves perfor-

mances compared to kernels from substitution matrices,

3. combining experimental observations with VAE derived predictions through Gaus-

sian Process regression increases correlations of predictions with experimental

observations.

The methods we propose in the following sections are verified through an experimen-

tal case-study. We evaluate the experimental predictions against true experimental

measurements through different metrics, namely the correlations between predictions

against the true experimental measurements ρ, spearman-r, as well as mean-squared

error and its square-root (see supplementary 7.1). Our goal is to find predictions

that correlate highly with the true underlying data, while keeping the error low. The

case-study is concluded with experimental cross-validation runs per protein, taking

into account the performance over individual positions (see Section 4.4).

1.2 Research Hypotheses 3



2Background

This section reviews the background required for the following methodological work.

We introduce metrics and measures by which we can assess the performance for protein

design (2.1) as well as methods to quantify relatedness of protein mutational variants

(2.2). To understand the previous work (2.3) and build up the methodological proposal,

we require an understanding and definitions for Gaussian Processes (2.4) as well as

Variational Auto-Encoders (2.6).

2.1 Protein Performance Metrics

We can assess a protein by a variety of properties. These include, for example thermody-
namic stability, expressed as ∆∆G - the change in Gibbs Free Energy [74][24, p. 895].

This is an essential metric in protein design and a majority of computational models

aim to predict thermodynamic stabilities of proteins [66, 57, 70, 12, 17]; including the

evaluation of the reference mGPfusion method [38]. Another metric of interest can be

the growth factor of an organism associated with a functional protein [7]. Previous

studies have shown that there is a correlation between the observed frequency of an

amino acid residue and the change in Gibbs free energy (∆∆G) [59, 87]. The work by

Hopf et al and Riesselman et al predict the performance of differing protein growth

factors [32, 68].

The focus of this thesis is to investigate protein properties with respect to stability and

organismal fitness. We extend the mGPfusion model, which has been developed for

predictions of thermodynamic stability to the application of growth factors.

2.2 Substitution Matrices

Now that we have established what properties we want to predict, we introduce the

measure to assess two sequences and score similarity, provided we have a Wild Type

(WT) and variants.

Given that we have two sequences X and X ′ of length n and m, we e.g. want to

quantify their differences, align them, etc. . One way to achieve this is to sum the

logged likelihoods of the substitutions of the different elements in the sequence with

reference to a common ancestor. For this we use a substitution matrix.

Let us assume that residues in a sequence occur independently and at random with a
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frequency q. We denote this for the elements of the sequences, x ∈ X and x′ ∈ X ′ 1 ,

as:

P (x, x′| random) =
n∏
i=1

q(xi)
m∏
j=1

q(x′j). (2.1)

Let us also assume that there is a joint probability for the residues in the sequences to

occur together. We refer to this as the match-model:

P (x, x′| match) =
n∏
i=1

p(xi, x′i), (2.2)

which has the ratio

P (x, x′| match)
P (x, x′| random) =

n∏
i=1

p(xi, x′i)
q(xi)q(x′i)

. (2.3)

We want to arrive at an additive scoring system, therefore we introduce the log:

log
(
p(x, x′)
q(x)q(x′)

)
= s(x, x′) (2.4)

(for Eq.(2.1) to Eq.(2.5) see [19, pp.14-15]). This is our score s(x, x′) which we can

apply to the range of letters in our alphabet, which make up our sequence. From this

we compute our S:

S =
n∑
i=1

s(xi, x′i). (2.5)

We have now introduced a method to compute a score from the ratio of the frequencies

of residues for a sequence. Some examples of substitution matrices are:

1. various BLOSUM matrices [29], which score based on conserved amino-acid pair

blocks from aligned protein sequences,

2. PAM or Point Accepted Mutation matrices, based on the observed mutations of

closely related protein sequences [83],

3. matrices based on protein structures,

4. biochemical properties and others [65, 10, 9, 63, 54].

1For simplicity the two sequences X and X ′ are assumed to have the same length, n = m.

2.2 Substitution Matrices 5



For later use of these matrices and their applicability in the context of Gaussian

Processes we have to adhere to the requirement of a positive (semi-)definite matrix,

in order to construct a covariance matrix. This means, that the matrix does not have

any negative eigenvalues. Though, Jokinen et al. report that they use p.s.d. kernels,

BLOSUM62 is also reported not to be p.s.d (see 7.4.1 in [51]), which is accounted for

by normalization of S.

2.3 Computational Models for Protein Property
Prediction

Now that we have been introduced to the properties which we want to predict and a

method to score similarities between sequences, we are interested what approaches

exist to predict such properties from sequence and other available information. Ulti-

mately, the approaches to predict protein properties vary. Taking into consideration

the Computational Biology point of view, one can build a model from evolutionary
information. Some specific examples are the evolutionary-coupling based structure

prediction EVFold [75], and EVmutation [32]. Another approach are models based on

force-fields and biophysical properties.

One of the gold-standards in the industry and an example of a force-field method,

which encompasses different approaches is Rosetta. The Rosetta method can be used

for protein structure prediction, as well as de-novo protein assembly, for single and

multiple mutations and is an often-cited benchmark [78, 77, 70, 17]. Other approaches

utilize elements such as: combinatorial linear models like PoPMuSiC [15], Natural

Language Processing methods like ProtTrans and ESM [21, 69]. Recent work has sug-

gested that protein information can be captured through deep learning approaches [32,

68]. We can distinguish the methodological approaches also from a Computer Science

point of view. Here we can broadly separate supervised from unsupervised learning.

In our specific case, we are interested in two models: the mGPfusion method is a

supervised method utilizing Gaussian Process regression, whereas the Deep Sequence

method relies on unsupervised learning of a probabilistic model from multiple aligned

sequences.

2.4 Gaussian Processes

One specific Machine Learning approach for predictive modeling are Gaussian Pro-

cesses. Gaussian Processes (GPs) have been applied to the realm of protein fitness

2.3 Computational Models for Protein Property Prediction 6



arguably first by Romero et al in 2013 [71]. More recently, they were used in the

mGPfusion method, as presented by Jokinen, et al in 2018 [38].

GPs are a non-parametric, probabilistic method in Machine Learning. We can define a

GP, given a mean function m and a covariance function k 2 . A Gaussian Process is a

random stochastic process, which produces a predictive posterior for the unknown re-

gression function f (see [88, p.13]). We can obtain these function values, for x, x′ ∈ X
as :

m(x) = E[f(x)], (2.6)

k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))], (2.7)

f(x) ∼ GP(m(x), k(x, x′)). (2.8)

2.4.1 Gaussian Process Regression

As we obtain function values from our GP we can use it to regress an unknown function

and find a predictive posterior. Let our training data be X and our unobserved test

data X∗. Then our noiseless joint distribution from which we get the resulting expected

training values f and test predictions f∗ is:

 y
f∗

 ∼ N
0,

K(X,X) K(X,X∗)
K(X∗, X) K(X∗, X∗)

 (2.9)

(see [88, p. 16]). For simplicity we assume a zero-mean function.

One application case for Gaussian Processes is that it enables us to account for inherent

noise in our data. Let the noise terms ζ1, ζ2, ..., ζn be from a Normal distribution and

i.i.d. such that ζi ∼ N (0, σ2) for i = 1, ..., n. This is then cov(y) = K(X,X) + σ2
nI:

 y
f∗

 ∼ N
0,

K(X,X) + σ2
nI K(X,X∗)

K(X∗, X) K(X∗, X∗)

 . (2.10)

From this we can derive the final predictive distribution for f∗:

f∗|X, y,X∗ ∼ N (f̄∗, cov(f∗)), (2.11)

f∗ := E[f∗|X, y,X∗] = K(X∗, X)[K(X,X) + σ2
nI]−1y, (2.12)

cov(f∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]−1K(X,X∗) (2.13)

2The covariance function will also be referred to as covariance kernel or kernel function.

2.4 Gaussian Processes 7



(see [88, p. 16], [40, pp.15-18]). The Gaussian distribution also applies to our observed

values y ∼ N (0, K + σ2
nI), so that we can compute the log marginal likelihood p(y|X)

in closed-form as:

log p(y|X) = −1
2yT (K + σ2

nI)−1y− 1
2 log |K + σ2

nI| −
n

2 log 2π. (2.14)

For reference see [88, p.19].

2.4.2 Kernels and Covariance Functions

In order to quantify the relatedness of our data we require a covariance function.

The properties of the covariance function influence the nature of the function f . For

the covariance functions in our GP we require positive definite kernels as defined in

[40, p.7]. We can differentiate between different kernel properties, such as stationary
kernels [88, p.82] with varying degrees of differentiability, non-stationary kernels [88,

p.90] or non-vectorial input kernels. Furthermore, we can build new kernels from

existing positive definite kernels by:

1. sums of kernels k(x, x′) = k1(x, x′) + k2(x, x′),

2. product of kernels k(x, x′) = k1(x, x′)× k2(x, x′),

3. product spaces with z =
x
y

, s.t. k(z, z′) = k1(x, x′) + k2(y, y′) or kn(x, x′) =

k1(x, x′)× k2(x, x′),

4. vertical rescaling k(x, x′) = a(x)k1(x, x′)a(x′),

5. warping and embedding k(x, x′) = k1(u(x), u(x′)),

6. additions k(x, x′) = k1(x, x′) + c,∀c ∈ R+,

7. product of functions k(x, x′) = f(x) · f(x′) for any f : X −→ R

(Def. 19.2-.6 [4, p. 419] and Th.2.20 [30, p. 36]). We keep this in mind for our

VAE-specific substitution matrix equivalent, specifically the sum, product and rescaling

of kernels.

2.4 Gaussian Processes 8



2.4.3 Predictive GPs for Protein Variants

We have introduced GPs, some of their properties and requirements which are appli-

cable to our method development. A question of interest is, how this method can be

applied to predict protein properties.

The baseline for our benchmark and reference to state of the art methods is mGPfusion,

which uses a combination of different substitution matrices through Multiple Kernel

Learning (MKL). Specifically, MKL encompasses 21 substitution matrices, using the

weighted sum as a covariance function which is later optimized. It is defined as:

Kφ =
21∑
m=1

wmKm,

where Km is the covariance kernel for proteins computed from the normalized sub-

stitution matrices (see Eq. 9 [38]). Together with conditioning of in-silico mutations

on experimental results we compute predictions with GP regression. Results found

in [38, p. i277], suggest that a selection of certain substitution matrices outperform

others. Furthermore, using mGPfusion without the quasi-newton optimization gives us

comparable performance, while allowing for better run-time and memory requirements

of the method. 3 Therefore we propose the following changes. Firstly, we will use

the latent representation of the encoder from the protein family (see section 2.6) to

replace the Rosetta in-silico input source. Secondly, we propose to replace the MKL with

a covariance function that computes the substitution likelihood from learned latent

embeddings. The previous work and Gaussian Process regression suggests, that if we

can obtain a covariance function that holds implicitly the relations of the protein-space

within-itself we obtain better likelihood computations and have potentially better

results from the model. We rely on the assumption that a VAE captures higher order

information (e.g. phylogenetic relations) as constraints in the lower-dimensional latent

representation. There are different approaches to capture and express this information,

which will be explained in sections 3.4, and 5.4.2.

2.5 The Deep Sequence Method

The Deep Sequence model is another Machine Learning based approach to predict

performance of protein variants. It relies on the sequence input and the resulting

predictions correlate with protein properties based on the latent representation of the

3A selection of baseline results on the original dataset is available in the supplementary table 7.2 for
comparison.
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model. To train the model we require a Multiple Sequence Alignment (MSA).

A MSA is a generated alignment of a set of related sequences such as protein sequences.

The alignment is based on evolutionary traits and accounts for mutations, deletions or

insertions of the sequences toward one-another through algorithmic scoring, taking

into account substitution matrices [82]. Given protein family sequences from a MSA we

fit a Variational Auto-Encoder (VAE), which we introduce in the following section 2.6.

From different initialization and priors an ensemble of VAEs computes a log-likelihood

ratio, which correlates with underlying protein experimental observations as presented

in [68]. The VAE learns a lower-dimensional latent representations, that can give

insights about the protein specific or protein-family properties. Our work does not

use the Deep Sequence method directly, but relies on the reported insights to use

a VAE trained on protein family data. We build a model of lower complexity and

use the properties of the VAE as input for predictive models. We thereby aim to find

an improvement over the use of substitution matrices to gain information of protein

properties from primary structure and secondary structure.

2.6 The Variational Autoencoder

Previous work has shown that specific deep-learning approaches like a (Variational)

Auto-Encoders learn lower dimensional representations of underlying distributions,

given a training data-set [1]. Over the past years VAEs have been applied to set new

state of the art methods such as in chemical design or drug design [23, 13]. Specifically,

when constructing generative auto-encoding models on protein family data, previous

studies show that protein properties can be captured, such as phylogenetic relationships

[68, 18, 16]. Specifically Riesselman et al train an ensemble of VAEs in an unsupervised

way and utilize them as a predictive method for different protein properties such as

thermodynamic stabilities, and growth-factors [68]. This section serves to introduce

the VAE and its background.

Let us first define our data of size N where x is a sequence of length L, as x1...N ≡
xN(i) ≡ x1, x2, ..., xN = D to be i.i.d..

2.6.1 VAE Definition and Latent Approximation

The general goal is to find a model pθ(x) that approximates the true underlying data

p∗(x), sufficiently well. This model is then based on a conditional latent variable z. As

a general function approximator we use Neural Networks, also referred to as Multi-layer
Perceptrons [55, pp. 565-566]. We define the VAE as a composition of an encoder
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Neural-Network (NN) e and the decoder neural network g as proposed in [44] and [25,

pp.499-523]. For a VAE the encoder learns the parameterization of the distribution

underlying the latent variable z of dimensions d. Such that z ∈ Rd expresses the

mean µ and standard deviation σ of a Gaussian distribution. The decoder learns to

reconstruct the input from the latent representation. We have the prior distribution

p(z) for which we find an approximation q. We will refer to the parameters of the

encoder as φ and the decoder θ. The goal is to find:

N (z;µ, σ) = qφ(z|x) ≈ pθ(z|x). (2.15)

For reference see [43, pp.15-16].

Instead of p(x) we evaluate p(x, z). This means we get the joint likelihood of the

data and the latent random variable z. The marginalization of the joint probability is

therefore: p(x) =
∫
p(x, z)dz ⇔

∫
p(x|z)p(z)dz. With an infinite latent continuous z we

would obtain a model as a mixture of Gaussians with differing means [43, p.12], such

that:

prior: p(z) ∼ Nz(0, I),

posterior: p(x, z, φ) ∼ Nx(e(z, φ), σ2I).

Where φ are the parameters for our non-linear encoding function e (NN). To compute

the posterior over the observed data x given the hidden z we use Bayes rule:

p(z|x) = p(x|z)p(z)
p(x) . (2.16)

The marginal likelihood of the model can be very complex and is generally not tractable.

Therefore in this equation p(x) cannot be evaluated, and there exists no closed form

expression.

We sample z∗ from prior p(z) such that we can compute µ and likelihood of p(x|z) from

e(z∗, φ). We compute:

p(x) =
∫
p(x, z|φ)dz =

∫
p(x|z, φ)p(z)dz =

∫
Nx(e(z, φ), σ2I)Nz(0, I)dz. (2.17)

Again there is no closed form solution for this integral over the latent random variable

z. Therefore we approximate the model by maximizing the log-likelihood of a bound.

Specifically, we optimize the Evidence Lower Bound (ELBO), which we introduce in

the following section 2.6.2 with a derivation.
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Given that we have a bound to optimize on we could perform Expectation Maximization

(EM) [4, p.260] - iteratively choosing φ such that the approximation q is equal to

posterior p and changing θ to maximize the bound.

The problem is that we cannot solve the posterior expression due to the non-linear

latent random variable. This makes the EM approach not feasible and instead we have

to rely on an approximation through q(z|φ).
We aim to find a Gaussian distribution that is closest to minimizing Kullbach-Leibler-

Divergence (KLD) 4. Minimizing the KL-divergence is equivalent to maximizing the

log-likelihood of the probabilistic model [43, p. 10]. For optimal choice we condition

the approximation on the observed data:

q(z|θ, x) ∼ Nz(gµ(x|θ), gσ(x|θ)). (2.18)

Again, the g(x, θ) is a NN with parameters θ to predict mean and variance. From this

we can compute the ELBO as,:

ELBO(θ, φ) =
∫
q(z|x, φ) log p(x|z, θ)dz −KL(q(z|x, φ), p(z)). (2.19)

The first term can be rewritten as an expected value, from summing over samples z∗

obtained from e: E[f(z)] ≈ 1
N

∑N
n e(z∗n).

⇒ ELBO(θ, φ) ≈ log p(x|z∗, θ)−KL(q(z|x, φ), p(z)). (2.20)

further q(z|x, θ) ∼ Nz(µ, σ). To make things more tractable we can compute the KL

divergence in closed form:

KL(q(z|x, θ), p(z)) = 1
2(Tr(σ) + µTµ−D − log(det(σ))). (2.21)

Thus we compute the ELBO by (i) estimating µ and covariance σ of posterior from q

and (ii) draw sample z∗.

This sampling procedure is not differentiable. The latent variable z does not allow for

back-propagation and subsequently we cannot optimize with respect to our objective

function. In order to get a fully differentiable network and perform optimization we

have to reparameterize, such that z∗ = µ+σ1/2ε, with the random variable ε ∼ Nε(0, I)
(see [44, p.3] and [25, pp.686-687]). Now we have the means to set-up and optimize

a VAE using variational approximation through q to optimize a lower bound on the

true posterior p.

4The KL divergence quantifies the distance between two distributions p, q and is defined as:
KL(q, p) ≡ 〈log q(x)− log p(x)〉q(x) ≥ 0 [46] [4, p.170].
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Further, we rely on the stochastic estimate of the optimization (e.g. SGD or ADAM

[42]). Stochastic Gradient Descent (SGD) optimizes on randomly drawn mini-batches

M⊂ D from our data D, such that we get an estimator for our maximum likelihood:

1
ND

log pθ(D) ' 1
NM

∑
x∈M

log pθ(x) (2.22)

(see [43, p. 11] and SGD as presented in [56]).

2.6.2 The Evidence Lower Bound

To optimize the VAE we introduce the loss, which we get from a lower bound.:

Given our data {xi}N we maximize the log likelihood with respect to θ. Under the

assumption that σ2 is known, we learn θ.

θ̂ = argmaxθ
I∑
i

log p(xi|θ) = argmaxθ
I∑
i

log
∫
p(xi, zi|θ)dzi. (2.23)

We find a lower bound on the log likelihood given θ dependent on the parameters φ.

We can use Jensen’s Inequality (see Def. (2.6.3)) to derive the lower bound:

⇒ log
(∫

q(z)p(x, z|θ)
q(z) dz

)
≥
∫
q(z) log p(x, z|θ)

q(z) dz, (2.24)

⇒ ELBO(θ, φ) =
∫
q(z|φ) log p(x, z|θ)

q(z|φ) dz. (2.25)

We maximize the lower bound with respect to θ and φ.

We know that the bound is tight given a fixed θ, if φ is such that the ELBO and the

likelihood are equivalent given an observation: q(φ) ' p(z|x). Keeping this in mind we

can express the ELBO through the conditional probability:

ELBO(θ, φ) =
∫
q(z|φ) log p(x, z|θ)

q(z|φ) dz (2.26)

=
∫
q(z|φ) log p(z|x, θ)p(x|θ)

q(z|φ) dz (2.27)

=
∫
q(z|φ) log p(x|θ) +

∫
q(z|φ) log p(z|x, θ)

q(z|φ) dz (2.28)

= log p(x|θ) +
∫
q(z|φ) log p(z|x, θ)

q(z|φ) dz (2.29)

= log p(x|θ)−KL[q(z|φ)||p(z|x, θ)]. (2.30)
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The KL divergence is zero iff q(z|φ) = p(z|x, θ). The introduction of the ELBO was done

with reference to [25, p.693] (see (2.5)-(2.12) in [43, p.18], [44, p.6]). The ELBO

allows us a joint optimization of both θ and φ through Stochastic Gradient Descent.

2.6.3 Def.: Jensen’s Inequality

We rely on Jensen’s inequality to derive the ELBO. Let the expected value of a point

passed through a concave function f be at least as large as the expected values of that

concave function at that point,:

f(E[y]) ≥ E(f(y)) (2.31)

(see (4) in [36] [4, p.666]). We can apply this to the log function, such that in our

specific case:

log(E[y]) ≥ E(log(y))⇒ log(
∫
p(y)dy) ≥

∫
p(y) log(y)dy. (2.32)

The likelihood corresponds to our expected value.
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3Methods

The previous chapter provided the basis for the mGP workflow. We use experimental

data for either thermodynamic stability or growth factors depending on the proteins. A

detailed overview of the data-set can be found in section 4.1. We aim to incorporate

information from the protein family data through sequence information and therefore

add a MSA per protein as input, from which we fit a VAE. We propose to add the

log-likelihood ratio (section 3.1) and transform it using Bayesian Regression (section

3.2.3), to add it as in-silico data. This section introduces how we incorporate the

log-likelihood values as well as the required transformation function, which makes up

the mGP+∆ELBO workflow. As an additional, separate method, we propose to add

the log-likelihoods of the VAE into the covariance kernel directly. This constitutes the

mGP+DES-kernel workflow and will be described in section 3.4.

3.1 VAE-derived Likelihoods as Input

Given that we have a VAE that has learned a protein family MSA, we use the likelihoods

for a given sample as in-silico input downstream. We make the assumption that the

model has learned higher order functional constraints from the sequences. This

approach is described by Riesselman et al as the log-ratio heuristic [68, p. 817]. We

use specifically the change in log-probability with respect to the WT from the latent

representation for each protein and derive in-silico values yS.:

yS = ∆ELBO = log p(x)− log p(WT). (3.1)

Previous work has shown, that this approach can work reliably across different models

[32].

3.2 Hyperparameters and Model Selection

Throughout the workflow different hyperparameters are assigned and optimized:

hyperparameters for the VAE are the encoder φ and decoder θ, the parameters for the

transformation function, including noise parameters for experimental observations σE,

in-silico data which also accounts for encoder output σS and their scalar t. Lastly, there
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are the weights w associated with the kernel learning.

We define the vector of hyperparameters as Φ = (φ, θ, σE, σS, t,w). We optimize these

hyperparameters separately, such that we (1) optimize hyperparameters for our VAE,

then (2) we train the Bayesian Regression scaler as a separate model and (3) we

perform kernel learning by optimizing the negative log-likelihood.

3.2.1 Models and Training

VAE Specifications

Three VAEs were trained with 55 latent dimensions, the encoder a feed-forward NN

layer with 1700 neurons and ReLU activation using one-hot encoded sequences as

input. The decoder is a feed-forward NN with 1200 neurons, as well as a dropout

layer and ReLU activation. Final activation is a log-softmax on the classification output

corresponding to the label-encoding of the sequence. Training was conducted over

200 epochs across mini-batches of size 128 sequences weighted samples from protein

respective MSA data-set. For optimization the Adam optimizer with a learning-rate

of 0.000027 was used, dropout was set to 0.065 and a weight decay of 0.007 . See

supplementary table 7.3 for an overview.

The difference between the Deep Sequence model and the VAE architecture used in this

thesis is, that we use neither sparsity layers nor linear mappings C or different prior

initialization. We limit ourselves to a standard normal prior. The likelihoods which we

compute come from one VAE per protein and not an ensemble of VAEs.

3.2.2 Sequence Weighting

The composition of the MSA for each protein can be biased due to the generation of

the MSAs. Some sequences may be over-represented, which impacts the training of

the VAEs. In order to account for that and improve training performance, sequence

weighting was conducted as proposed by Riesselman et al [68]. We find a weight π of

the sequence x and a variant x′ via the Hamming distance DH:

π =
(

N∑
t

I[DH(x, x′) < θID]
)−1

. (3.2)

See [68, p.823]. Here θID is the percentage of allowed divergence and in our case

we use 80% sequence identity. The computed weight is then used in the sampling for
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the mini-batches when conducting inference. Specifically we sample a sequence with

probability pS = πS∑
t
πt

(see supplementary [68]).

3.2.3 Bayesian Regression Scaling

The original mGPfusion method utilizes Rosetta simulations. When we use Rosetta

in-silico input we have REU values for which we have to find a transformation function

to obtain e.g. ∆∆G values. Comparable to this are the values which we obtain

from sampling the latent representation. The values are in the range of the latent

representation values. Therefore we have to find a transformation function from the

latent representation values to experimental observations. We do this by training a

Bayesian Regression model on the intersection of experimental variants and samples:

ỹ = g(yS|θj) = aj exp(cjyS) + bjy
S + dj. (3.3)

For reference see [38, p. i276]. We use the same hyperparameters as proposed in the

mGPfusion method (see Supplementary 1 [38]). For inference we use MCMC sampling

with a NUTS sampler [31], to fit the posterior:

p(θj|yE, yS) ∝
∏

i:xi∈XE∩XS

N (yEi |g(ySi |θj), σ2
n)p(θj), (3.4)

with initial σ2
n = 0.5. We sample the parameters from:

a ∼ Gamma(2, 1.5), (3.5)
b

2 ∼ Beta(1.3, 2), (3.6)

3.33c ∼ Beta(2, 5), (3.7)

d ∼ N (−a, σ2
s). (3.8)

See Eq. (3)-(8) [38]. Where σS ∼ N (50, 0.007) is the in-silico noise. The sampling

routine are N = 10000 MCMC samples with 500 warm-up steps. We obtain the

transformation after sampling as:

ỹSi = 1
N

N∑
s

g(ySi |θ
(s)
j ), (3.9)

σ2
T (i) = 1

N

N∑
s

(g(ySi |θ
(s)
j )− ỹSi )2. (3.10)

See [38, p.i276].
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3.3 Optimizing the VAE Architecture

We formulate the configuration of hyperparameters for the VAE as an optimization

problem to achieve an optimal architecture given the β-lactamase and the NZ specific

data-set. The parameters are number of neurons in hidden-layers for encoder φ and

decoder θ, latent dimension (z), learning-rate l, weight-decay d with training on an MSA

over a fixed period (epochs). We run an optimization routine to minimize the objective

function given our sequences x ∈ X with the experimental observations yi for sampled

log-likelihoods qθ(x|z) = y∗:

LVAE = −|ρ(y, y∗)|. (3.11)

.

3.4 The Making of a Kernel

We now combine the substitution matrices, with the VAE into one method. A latent

model, such as the VAE, captures information from underlying data e.g. phylogenetic,

evolutionary information [16]. We use this information to derive a covariance function

that quantifies the similarity of two sequences, given the generative model.

3.4.1 Deriving a Substitution Matrix from an Embedding

Like the traditional substitution matrices quantify the occurrence of two amino acids

together, we use the likelihood of the occurrence of the residues given the VAE. We

propose:

S(xi, yi) = log p(xi ↔ yi)
p(xi)p(yi)

, (3.12)

where↔ is the occurrence of the amino-acid sequence x at position i in the presence

of sequence y at position i. This is normalized by p(x); the encoder-likelihood of the

occurrence of the sequence residues at that position. We compute the substitution

score for a sequence of length L by summing over the individual residues. We cannot

integrate over all of the latent space. In order to make the computations feasible,

we take a sample of size n from a random normal distribution N (0, I), with which
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we evaluate encoder and decoder likelihoods. When iterating over the sequences we

compute the value for S as such:

⇒ S(xi, yi) ≈ log
 1
p(x¬i)

1
p(y¬i)

1
n2

n∑
zx∼q(·|x)

n∑
zy∼q(·|y)

p(xi|zx)p(x¬i|zx)p(zx)p(yi|zy)p(y¬i|zy)p(zy)
p(xi)p(yi)q(zx|x)q(zy|y)

 .
(3.13)

When formulating the covariance function we are interested in the value at position i,

not the whole sequence. However the above formulation will make the computed val-

ues comparable to substitution matrices like BLOSUM. The probability of the elements

in the sequence x not being of type i is:

p(x¬i) ≈
∑
z,a

p(xi = a, x¬i|z).

A derivation for S as well as p(x¬i) can be found in the subsequent section 3.4.2.

Within this proposed computation we conduct importance sampling to weight regions

of importance (see [58, ch. 9.1]). We aim to compute values from regions where we

have data and likelihood assessments are sensible. Importance sampling introduces a

likelihood ratio, which consists of the importance distribution from our encoder q and

the nominal distribution from our decoder p [58, p. 4]. We incorporate the likelihood

ratio for every latent sample that we assess.

3.4.2 The Encoder-Residue Corollary

Now that we have posed the initial formulation of the substitution matrix equivalent,

we continue with its derivation:

S(xi, yi) = log p(xi ↔ yi)
p(xi)p(yi)

, (3.14)

⇔ S(xi, yi) = log p(xi|x¬i)p(yi|y¬i)
p(xi)p(yi)

. (3.15)

We are interested in the local interaction of the residues given our learned VAE

representation. Therefore we investigate the local interaction for a an element in the

sequence x at position i in particular. We define the local interactions as

p(xi|x¬i) =
∫
X
p(xi|z)p(z|x¬i)dz. (3.16)
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The input for our encoder is discrete, even though the latent variable z is continuous
1. We can approximate z by sampling from our encoder by inputting our sequence

x; zx ∼ q(·|x) with n samples and we evaluate if the sequence at position i has the

amino-acid value a:

p(Xi = a|X¬i = x¬i) ≈
1
n

n∑
zx∼q(·|x)

p(Xi = a|zx)
p(zx|X¬i)
q(zx|x) . (3.17)

As p(z|x¬i) cannot be computed, we reformulate the term by applying Bayes Rule:

p(Xi = a|X¬i = x¬i) ≈
1
n

n∑
zx∼q(·|x)

p(Xi = a|zx)
p(X¬i = x¬i|zx)p(zx)
p(X¬i = x¬i)q(zx|x) . (3.18)

Since p(x¬i) is independent of z we can take it out. We keep the term to normalize

with it and as normalization ensures proportionality we take out 1
p(x¬i) :

p(Xi = a|X¬i = x¬i) ≈
1

p(X¬i = x¬i)
1
n

n∑
zx∼q(·|x)

p(Xi = a|zx)p(X¬i = x¬i|zx)p(zx)
q(zx|x)

(3.19)

= 1
p(X¬i = x¬i)

1
n

n∑
zx∼q(·|x)

p(Xi = a,X¬i = x¬i|zx)p(zx)
q(zx|x) ∝ 1

n

n∑
zx∼q(·|x)

p(x|zx)p(zx)
q(zx|x) .

(3.20)

Before we put everything together we take a look at the likelihood of a sequence

element Xi, given that the rest of the sequence has the values in the given configura-

tion:

p̃(Xi|X¬i = x¬i) ≈
1
n

n∑
zx∼q(·|x)

p(Xi, X¬i = x¬i|zx)p(zx)
q(zx|X = x) . (3.21)

Now with respect to (3.14), we obtain:

⇒ S(xi, yi) ≈ log
 1
p(x¬i)

1
p(y¬i)

1
n2

n∑
zx∼q(·|x)

n∑
zy∼q(·|y)

p(xi|zx)p(x¬i|zx)p(zx)p(yi|zy)p(y¬i|zy)p(zy)
p(xi)p(yi)q(zx|x)q(zy|y)


(3.22)

= log
 1
p(x¬i)

1
p(y¬i)

1
n2

n∑
zx∼q(·|x)

n∑
zy∼q(·|y)

p(x|zx)p(zx)p(y|zy)p(zy)
p(xi)p(yi)q(zx|x)q(zy|y)

 . (3.23)

1We denote zx as the latent variable evaluated with the sequence x.
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Figure 3.1: Contribution of the VAE-architecture in the proposed kernel function.
We take n samples from the latent representation. The joint probability is evaluated

for the element at position i with residue a (red box) such that we evaluate the
categorical likelihoods output from the decoder. This goes together with the rest of the

sequence x¬i (orange box) being in its specific configuration, with respect to the
decoder categorical likelihood output. As part of the importance sampling we evaluate
the encoder with the drawn samples z, given a standard-normal prior (blue box) and

the likelihood of the encoder observing the latent samples given the latent
representation that is computed from the sequence input x (purple box).

3.4.3 Definition Normalizing Constant px¬i

In equation (3.22) we require the normalization by the likelihood of the sequence not

at position i. We introduce this via the sum over the residues, such that:

1 =
∑
a

p(xi = a|x¬i) ≈
∑
a

1
p(x¬i)

1
n

n∑
z∼q(·|x)

p(xi = a, x¬i|z)p(z)
q(z|x) (3.24)

= 1
p(x¬i)

1
n

n∑
z∼q(·|x)

∑
a

p(xi = a, x¬i|z)p(z)
q(z|x) (3.25)

⇒ p(x¬i) ≈
1
n

∑
z,a

p(xi = a, x¬i|z)p(z)
q(z|x) . (3.26)

3.4.4 Introducing Numerical Stability

When computing the likelihoods we note that the term p(X¬i = x¬i|z) becomes very

small especially with longer sequences. This drives the values computed with the

proposed kernel function against zero. One potential way to improve the numerical

properties of our term is to take apart the normalization with q(z|X = x) into its
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constituents. Then we apply parts of the vector to their respective parts in the sequence.

For the sake of brevity we will write q(z|X = x) as q. We take apart q into its

constituents as follows:

q = (q 1
L )L = (exp(log(q)) 1

L )L =
(

exp(log(q)
L

)
)L

=
L∏
i=1

exp
(

log(q)
L

)
. (3.27)

We introduce this to p(xi|x¬i). For brevity we leave out the normalization with the

latent samples n:

p(Xi = a|X¬i = x¬i) ∝ p(Xi = a|z)p(X¬i = x¬i|z)p(z)∏L
i=1 exp( log(q)

L
)
. (3.28)

We apply the log 2.:

⇒ log
p(Xi = a|z)p(X¬i = x¬i|z)p(z)∏L

i=1 exp( log(q)
L

)

 (3.29)

= log(p(Xi = a|z)) + log(p(X¬i = x¬i|z)) + log(p(z))−
L∑
i=1

log(q)
L

. (3.30)

In order to subtract our normalizing q from the likelihood at X¬i we reformulate the

log-likelihood with respects to every element in the sequence except for i, using j, such

that j 6= i:

log(p(X¬i = x¬i|z)) = log
L∏
j=0
j 6=i

p(Xj = xj|z) =
L∑
j=0
j 6=i

log p(Xj = xj|z). (3.31)

Now we can subtract q from the likelihood p. We make use of the fact that∑L
i=0 log(q(z|Xi = xi)) = ∑L

j=0
j 6=i

log(q(z|Xj = xj)) + log q(z|Xi = xi):

⇒ log(p(Xi = a|z)) + log(p(z)) +
L∑
j=0
j 6=i

log(p(Xj = xj|z))−
L∑
i=1

log(q(z|Xi = xi))
L

(3.32)

= log(p(Xi = a|z)) + log(p(z)) +
L∑
j=0
j 6=i

(
log(p(Xj = xj|z))− log(q(z|Xj = xj))

L

)

(3.33)

− log q(z|Xi = xi)
L

.

2We simplify our equation by using the equivalence of the log of a product as log
∏
f(x) =

∑
log f(x).
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We do the same procedure with p(z) and arrive at :

⇒ log(p(Xi = a|z)) +
L∑
j=0
j 6=i

log(p(Xj = xj|z))−
L∑
i=1

log(q(z|Xi = xi)) + log(p(z|Xi = xi))
L

(3.34)

= log(p(Xi = a|z)) +
L∑
j=0
j 6=i

(
log(p(Xj = xj|z)) + log(p(z|Xj = xj))− log(q(z|Xj = xj))

L

)

(3.35)

+ log p(z|Xi = xi)− log q(z|Xi = xi)
L

.

Lastly, we have to account for the length of the sequence. We therefore introduce

a constant that is proportional to the length of the sequence. If we assume that we

sample from uniformly distributed residues we get a likelihood of p = 1
20L per residue

in a sequence of length L. Now we introduce a constant of the nature c = 20L

20L into Eq.

3.24:

p(Xi = a|X¬i = x¬i) ≈
1

20L
1

p(X¬i = x¬i)
1
n

n∑
zx∼q(·|x)

p(Xi = a|zx)p(X¬i = x¬i|zx)p(zx)20L
q(zx|x) .

(3.36)

We regard specifically the term log(p(X¬i = x¬i|z)):

⇒ log(p(Xi = a|z)) +
L∑
j=0
j 6=i

(
log(p(Xj = xj|z)) + log(p(z|Xj = xj))− log(q(z|Xj = xj)) + log(20L)

L

)

(3.37)

+ log p(z|Xi = xi)− log q(z|Xi = xi) + log 20L
L

.

This is the final, numerically stable computation to obtain the values from the covari-

ance function.

3.4.5 S-Matrix Normalization

The substitution values, which we compute from our proposed covariance function,

can be negative, corresponding to values of low likelihood - as they are in log-space.

As a consequence it is possible that our kernel function is not positive definite, does
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not constitute a covariance matrix and is therefore not applicable to our GP regression.

There are different ways to account for negative values and ensure a p.s.d. kernel.

1. normalize S values s in a range of s ∈ [0, 1],

2. apply exp(S),

3. in case we have no negative values, but still no p.s.d. matrix, we can compute

the eigenvalues of k and incrementally add the smallest eigenvalue, until p.s.d.

is achieved.

We use the normalization, which is suggested by Jokinen et al. (see Eq. 8 [38]). Given

our original values S0 we scale by min and max:

S = S −min(S0) + 1
max(S0)−min(S0) + 1 . (3.38)

3.4.6 The VAE-based Covariance Function

We use the substitution value from 3.22 together with the rules of building new kernel

functions (see 2.4.2) to define our covariance function 3:

k(x, y) =
M∑
p=1

S(xp, yp)
∑
l∈nbps

S(xl, yl)
 . (3.39)

We compute the value S for all mutational variants M , while incorporating the sum

over the values of the neighborhood 4 residues (see top-row graph kernel in Fig. 4.1).

As the computed S values can become large, even in log-space we normalize the

covariance function values:

k̂(x, y) = k(x, y)√
k(x, x)k(y, y)

. (3.40)

3For reference see Eq. 8 in [38].
4The neighborhood is defined as nbps residues in a 5Åradius.
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3.4.7 The Proposed Algorithm

From our initial proposal and the subsequent considerations, we formulate the algo-

rithm of our proposed method as follows.:

Algorithm 1: DES-KERNEL

Input: VAE, Sequence: x, Sequence: y, n samples: S={s0...n ∼ N (0, 1)}, index

0 ≤ i ≤ L

Output: Kernel value of x and y interaction at position i: k(xi, yi)
1 zx ← VAE.encoder(x)
2 zy ← VAE.encoder(y)
3 Catx ← Cat(VAE.(zx.µ). exp())
4 Caty ← Cat(VAE.(zy.µ). exp())
5 px ← Catx.logprob(x)
6 py ← Caty.logprob(y)
7 ~pxix¬i

← []
8 ~pyiy¬i

← []
9 for s ∈ S do

10 pxix¬i
.append(likelihood(VAE, x, zx, i, s))

11 pyiy¬i
.append(likelihood(VAE, y, zy, i, s))

12 px¬i
← ∑

a
1
n

∑
n ~pxix¬i

13 py¬i
← ∑

a
1
n

∑
n ~pyiy¬i

14 p̂xix¬i
← 1

px¬i

1
n

∑
n

(pxix¬i )[i]
px[i]

15 return log(p̂xix¬i
× p̂yiy¬i

)
16

Algorithm 2: LIKELIHOOD

Input: VAE, x, zx, i, s

Output: Normalized likelihood: ~pxix¬i

1 z ← zµ + s× zσ
2 pz ← exp(∑zN (~0z,~1z).logprob(z))
3 qzx ← exp(∑zN (~0z,~1z).logprob(z))
4 Catp ← Cat(VAE.decoder(z). exp()).p
5 ~px¬iz ← []
6 for j, s ∈ numerate(sequence) do

7 if j == i then continue
8 else px¬iz.append(Catp[j, s])

9 ~pxix¬i
← ∏

~px¬iz

10 ~̂pxix¬i
← (Catp×~pxix¬i )×pz

qzx

11 return ~̂pxix¬i
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4Results

The workflow encompassing mGP and the proposed additions is displayed in Figure

4.1. For each protein we use the structural information1, from which we compute the

coordinates of the residues and derive contact maps in a 5Å distance around each

residue of the protein. We incorporate experimental data from Protabank, as described

in the following section (4.1) [84]. The mGP+∆ELBO includes scaled in-silico data

and is described in the later section (4.3.1). The variants are scored with respect to

differing residues in the sequence by either the weighted sum of covariance matrices

(mGP or mGP+∆ELBO) or by the previously proposed covariance function. We predict

unseen protein variant properties using GP regression and benchmark the individual

workflows, the results of which can be found in section (4.4).

1This is derived from the associated PDB data.
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4.1 Data

We are going to evaluate the mGP and mGPfusion method empirically. To give a

baseline, the mGPfusion method has been assessed on a subset of the original data -

specifically 9 proteins taken from Protherm [47] as presented in [38]. The supplemen-

tary table 7.2 gives a starting point and reference values for context.

To experimentally validate the methods and proposal we are going to conduct a case

study on three proteins. An overview of the relevant data-sets for the case-study

on the selected proteins, can be found in Fig. 4.2. We are going to use different

information available for each protein, namely: the primary - amino-acid sequence

information, secondary - sequence structure, and tertiary - fold of protein, available

from pdb information and basis for computed contact-maps. Different amounts of data

are available for each protein, specifically:

1. the growth factor under ampicillin stress for β-Lactamase, (n=4788) single-site

mutational variants [80],

2. the thermodynamic stability for a large number of single-site mutants (n=3143)

of Protein-G [57],

3. the growth rate of yeast cultures for Ubiquitin (n=1263) [72].

An abundance of family information is available for β-Lactamase and Ubiquitin,

whereas Protein-G does not have many native WT sequences and only a small set of

sequences available for a MSA, see Fig. 4.2. The SSL data were taken from experi-

mental observations, with Ubiquitin the least available single-site mutational variants

and β-Lactamase the most. To put the method in a comparable context, experimental

data published on β-lactamase2 were used for comparison [80]. From this data we

can compare the results with the Deep Sequence generative model [68]. In order

to assess performance on a well-performing data-set which has been assessed in the

mGPfusion publication and with a sufficiently large experimental basis, experiments

were also run with Protein-G3. 4 [57]. Another protein for comparison was Ubiquitin 5,

we selected this, because it showed low performance (spearman-r lower 0.5) in the

Deep Sequence work in comparison to other assessed proteins. Therefore this data

2PDB-ID: 1FQG
3Please note that throughout this thesis we use Protein-G to refer to the B1 Immunoglobulin binding

domain of the streptococcal organism.
4PDB-ID: 1PGA
5PDB-ID: 1UBQ
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serves as a low-performance benchmark with the experimental data [72]. Lastly an

internal data-set from Novozymes was used, specifically a Hexosaminidase. Since this

data is confidential, intellectual property, all results of that work are contained in an

undisclosed appendix.

To train the protein-family VAEs MSA from the individual proteins were used and an

overview can be found in Fig. 4.2. The alignments were generated as described in the

Online Methods section in [32] - see supplementary 7.3 for details. We denote a MSA as

a matrix X with n sequences of length L, the sequences were label-encoded x ∈ Zn×L

as well as one-hot encoded. β-lactamase and Ubiquitin were taken as available from

the work by Hopf et al and Riesselman et al [32, 68]. The available β-lactamase

MSA consisted of n=8403 sequences. Two Ubiquitin MSAs 6 were used, such that

the combined MSA consisted of n=11405 sequences. The protein-G MSA had to be

generated using the tools available from the MPI bioinformatics toolkit [93], since

Protein-G wild-type sequences are not as abundant, the HHblits search parameters

had to be relaxed. The E-val cutoff was set to 0.1, with n=5 iterations, and 10% min

probability in the hitlist against UniRef30_2020_06. The resulting PGA-MSA consisted

of n=1133 sequences and is of lesser quality than the other MSAs. This is not just

because of the lower sequence count, but also due to the amount of gaps in the MSA

and the higher chance of unrelated sequences with respect to the PGA wild-type.

Overall this data gives us a differentiated basis to conduct our experiments with dif-

ferent quality and amount of data, potentially impacting the mGP workflow and the

proposed additions.

6The Ubiquitin is human UBC and ISG15 specifically.
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Figure 4.2: Available protein data.
We have primary structure from Multiple Sequence Alignments (top-row, with the

conservation of residues color-coded). We obtain the secondary structure information
from pdb files (below MSAs, with yellow=sheets, pink=α-helices, white=coils) from

which the contacts within neighborhoods around the atoms of the residues are
calculated (surface marked as blur around residues 5Å radius). The Proteins have a

tertiary structure, their shape in three dimensional space. The bottom row is the count
of available data-sets (with an overview, top-barplot) for protein-family data from the

MSAs (pink) used for downstream VAE training and experimental variants (SSL,
orange) for predictions and evaluation. The count can be taken relative, to the length
of the sequence and is therefore also given as the ratio nSequences

LProtein
is (the bottom row).

4.2 VAE Representations as Clusters

We are going to evaluate the VAE’s learned lower dimensional representation. This

can provide insights into the quality of the latent embedding of the model and vice

versa into the underlying MSA sequences. The basis for our investigation is a VAE

per protein for subsequent experimental analysis. We train a VAE on the Multiple

Sequence Alignment of the respective family7. To display the lower-dimensional latent

representation a VAE with z=2, was trained. The µ of the two-dimensional latent

dimension was used and the results can be seen in Fig. 4.3.

7The specific architecture can be found in the Appendix table 7.3
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From this resulting lower dimensional representation we see that β-Lactamase shows

the most differentiated, star-shaped embedding, in latent space. Ubiquitin too shows

differentiation in the lower dimensional representation in the form of clusters. However

the clusters display less differentiation and a large cluster in the range of 2 ≤ x <

4,−2 ≤ y < 4.

Protein-G shows the least differentiation in latent space, with one major cluster. This is

to be expected due to the least amount of available sequences. Some points in Fig. 4.3

are outliers, which can come from unrelated sequences in our MSA.

We have verified that VAEs capture lower lower dimensional information from initial

sequences and the properties of the MSA has an impact on the resulting impact

Figure 4.3: VAE two dimensional latent representation.
Each blue dot represents the latent value of an encoded sequence from the
experimental data-set. β-Lactamase (left), forms a star shape in the latent

representation of the sequences. Ubiquitin (middle), shows clusters in a less
differentiated embedding. PGA (right), has the least sequences in the MSA and one

cluster is formed in the latent representation.

4.3 Experimental Case-studies

We now evaluate the results for the three workflows that we have introduced earlier

- see Fig.4.1. Firstly, we obtain the results for the mGP workflow (1), which uses

only the experimental observations and the weighted sum over substitution matrices

(MKL). The results of the initial mGP method give an overview of the general method

performance and can be found in supplementary 7.2. We obtain and evaluate the

∆ELBO values (2) of the experimental sequences, which we scale and use as in-silico

information and incorporate into the GP regression. We apply and analyze the novel

covariance function (3) with respect to the experimental data. Lastly, for the short

Protein-G and Ubiquitin we also combine workflow (2) and (3). The benchmarks for

all methods are placed at the end of this chapter 4.4.
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4.3.1 Including the ∆ELBO

Evaluating Log-Likelihoods

At this point, we have fitted lower dimensional latent representations from MSAs per

protein. Now we are going to include the captured information as substitute in-silico

data for our predictions. In order to effectively do that, we have to evaluate the

obtained likelihoods against experimental observations.

From the learned VAE we derive the log-ratio as the difference between the mutational

variant and wild-type in log-space. An overview of the underlying distribution and the

correlation can be found in Fig. 4.4. The results are displayed in Fig. 4.4 and show that

the log-likelihood ratio captures protein properties. The figure shows the spearman

correlation (red-line) of the ∆ELBO against experimental observations. The distribution

of the experimental as well as log-ratio values for each protein are displayed atop and

right next to the scatter-plots. We see that β-Lactamase has the highest correlation

of r = 0.636. 8 When accounting for all sequences in the experimental observations

our correlation is r = 0.62. We observe that Ubiquitin correlates over all experimental
sequences with r = 0.26 and Protein-G has the lowest of r ≈ 0.028, which constitutes

almost no correlation.

We have shown that VAEs capture information from the protein sequences, because

the latent representation correlates with experimental observations. This is the basis

for our in-silico inputs and to evaluate likelihoods in a covariance function.

8However this applies only to the a sub-set of the β-Lactamase experimental sequences, as presented
in [68].
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Applying Bayesian Regression

We are going to use Bayesian Regression scaling on the ∆ELBO values conditioned on

only few experimental observations. The log-likelihood ratio values were obtained by

encoding each sequence in the experimental data-set and initially these values are in

the range of the encoding latent representation. We require them to be in the range of

the experimental values to suffice as in-silico values.

To fit a Bayesian Regression model, we sampled 10% of the experimental observations

uniformly. These subsampled experimental observations used to train the transforma-

tion were excluded from later downstream tasks, as to not bias the later cross-validation.

To fit the posterior exponential function (Eq. (3.3)), inference was conducted with the

experimental subset as ground-truth yE values to scale the in-silico substitutes from

the latent representation. We perform inference using a Markov Chain Monte-Carlo

(MCMC) algorithm for 10.000 steps plus 500 warm-up steps was conducted using a

No U-Turn Sampler (NUTS) sampler [53, 31, 6]. We transform the ∆ELBO values to

the range of experimental observations, as can be seen in Fig. 4.5. There the sampled

transformation functions can be seen as grey lines in the background. We use this

regression function also to obtain the variance for each data-point. This is displayed as

red bands (Fig. 4.5), which are tighter in the regions of experimental observations and

larger in peripheral regions.

This operation preserves the correlation of the ELBO values towards the observed

measurements. The experimental measurements for both β-Lactamase and Ubiquitin

are growth factors, therefore the values are largely smaller or equal to zero, whereas

the binding domain of Protein-G are ∆∆G values and distributed around zero, as

evident from Fig.4.5. The fitted functions are non-linear, however the transformation

for Ubiquitin and Protein-G appears nearly linear for the majority of the data.

Now that we have applied Bayesian Regression and fitted a transformation function

per protein, we have transformed the values from the log-likelihood ratios to in-silico

proposals, which can now be added to the mGP workflow.
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4.3.2 Evaluating the Covariance Function and DES-Kernel

A different means to include information from the learned latent representation is

through the covariance kernel. The covariance matrix gives us an insight into the

pairwise relatedness of variants. We are going to evaluate the proposed function with

the experimental variant data.

During the development of the method, a naive iterative kernel was built and to directly

implement with reference to Eq. (2.10). Additionally, a kernel with logged operations

was built and tested to assess numerical stability of the implementation with respect to

the naive kernel - see Eq. (3.37). The experiments were conducted with a vectorized

kernel implementation (see supplementary 7.1). The vectorized implementation was

tested for nearly-exact results against the naive kernel on short sequences9. After

numerically stabilizing the covariance function, results for larger proteins could be

obtained and the covariance function and has been applied to the proteins of interest,

with the MSA variants as well the experimental variant observations. Furthermore, we

confirmed that the weighted sum over all residues at a position is 1 (in reference to Eq.

(3.24)).

In order to assess the numerical properties of the covariance function and to conduct

Gaussian Process regression the covariance matrix for all mutational variants has been

computed. All our experimental variants are single-site mutations.

For a subset of 20 variants per protein the computed kernel values are displayed in

Fig. 4.6. The covariance function values do not result in a definite kernel. In the

figure 4.6, brighter values are associated with higher likelihoods. We can see that the

computed matrices are not p.s.d., given that the diagonal values, equal to one, are

smaller than some of the off-diagonal values. This is the case for all observed proteins.

That means that the computed gram-matrices for each protein are not positive semi-

definite and subsequently not a covariance matrix and not applicable to a Gaussian

Process The computed values are distributed in a range close around 1.10 We would

have expected the values distributed between zero and one, where one is the diagonal

value on the diagonal indicating that the pairwise value for variants with themselves

are highest.

We have investigated the covariance function values and found that we did not achieve

a p.s.d. covariance matrix, which suggests that we need to make changes.

9In this case the reported accuracy is a difference of ≤ 10−4.
10The distribution of resulting covariance function values over the whole matrix for the individual

proteins, see Appendix 7.4.
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We can enforce positive semi-definiteness and symmetry to obtain a p.s.d. kernel. At

this point we could conclude our analysis into the proposed covariance function. We

have shown that the kernel is not positive (semi-)definite and therefore not applicable.

The differences between the likelihoods are small, which can be explained partly,

because the data are single-point mutation variants.

The subsequent steps are taken extra in order to investigate, if covariance function val-

ues capture properties of the latent representation, given that we enforce definiteness

and symmetry. Therefore to continue the analysis the difference between the highest

off-diagonal value the diagonal was taken plus a constant ε and added to the diagonals,

in order to make the covariance matrix psd. For β-Lactamase εBLAT = 0.1, for Ubiquitin

εUBQ = 0.204, and for Protein-G εPGA = 1.4.

The resulting covariance matrix was used in the evaluation of the Gaussian Process

regression.

Figure 4.6: Covariance function values for experimental variants.
The selected subset are the first 20 variant sequences of the experimental

(single-mutational variant) data-set for each protein. β-Lactamase variants (left),
(middle) Ubiquitin variants, and Protein-G variants (right). The covariance function
values have been computed for each and we see that some off-diagonal values are

larger than the diagonal values for each of the matrices.

4.3.3 Deriving a Substitution Matrix Equivalent

For the mGP and mGP+∆ELBO we use substitution matrices to compute scores from

log-likelihoods. The proposed covariance function formulation allows us to compute

such likelihoods from our embedding. This can provide additional insights into the VAE

and underlying sequence information. Therefore we are going to derive a substitution

matrix equivalent, given a trained VAE. A subset of the sequences was used, analogue

to the covariance function computation11. Instead of evaluating the likelihood of an
11The subset of the experimental data are the first n = 1000 sequences.
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individual residue at a given position, we compute the mean per residue over all

samples over the sequence, so that:

S(X) = 1
L

L∑
i=1

log
(

1
p(x¬i)

p(xi|x¬i)
p(xi)

)
. (4.1)

12 As seen in Fig. 4.7 we obtain a substitution matrix equivalent for β-Lactamase

(left), Ubiquitin (middle) and Protein-G (right). This matrix is position, specific and

not as general in its application as e.g. a BLOSUM or PAM matrix. The matrices

were also computed for the Multiple Sequence Alignments used for training of the

VAE (see Appendix Fig.7.3). In the comparison of the computed matrices from single-

site variants to the MSA, the biggest differences in values are evident for Protein-G.

Generally, we observe a block-like structure in their make-up, which is comparable

to the matrix that arises from the outer product of the log-likelihoods of a standard-

normal, sampled vector (see Appendix Fig. 7.2). From a comparison, with Fig. 7.1, we

notice differences to classical substitution matrices. For the matrix derived from the

latent representation of β-Lactamase we notice low log-likelihoods for the diagonal-

elements of e.g. C and W, which make for some of the highest log-likelihood values in

the PAM and BLOSUM matrix (Fig.7.1). Generally the diagonal value, which are the

highest observed log-likelihoods in the substitution matrices are not distinguishable in

the covariance function derived matrix for either of the proteins. What the embedding

derived S-matrices have in common with the original substitution matrices is the higher

likelihood bands for the S and T columns, as well as V. The likelihood for a gap is

highest for Protein-G, this can be explained by the underlying MSA used for training,

with the highest relative gap-count. The resulting matrices give us ground for later

discussion (see section 5.3.1).

After having computed covariance function values, we have shown that we can compute

something like a substitution matrix. However, the obtained matrices do not share the

same properties as classical substitutions like BLOSUM.

12For brevity the stabilizing constant adjustments have been omitted.
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4.4 Benchmark Results

To conclude the analysis of the experimental results we compare the overall perfor-

mance of the methods for each protein. In order to get a reliable estimate we use

test-train splits of the data based on the positions for each protein, as position-level

Cross-validation (CV).

As experimental evidence we collect Ubiquitin and Protein-G runs over all available

experimental mutational variants for each of the methods. For β-Lactamase a subselec-

tion of the first 1000 experimental variants was taken, to reduce the overall run-time.

We evaluate each method through position-level cross-validation. This means that as

many CV steps were taken, as number of positions exist in a protein sequence.

For each position at a time all mutational variants are taken as test-data; while the rest

of the data, namely all variants not having a mutation at that position, were considered

for training data. Each CV run per protein was conducted with a 25%, 50% or 100%

sub-sample, taken uniformly from all mutational variants in the training data. When

incorporating in-silico data, the uniform sample was conducted over the experimental

data plus the in-silico simulations. Under this set-up we can compute the spearman r

and MSE for each position.

The overall results for each method are displayed in Fig. 4.8: The boxplot shows the

distribution of spearman r and the mean-squared error based on the results from each

individual position.

Figure 4.8 shows the mean and quartiles of the measured correlation and mean-squared

error over all positions from the CV run per protein. For additional investigation, ir-

respective of positional results, the ρ, spearman r and root-mean squared error was

computed for all generated predictions against all ground truth experimental observa-

tions, see supplementary Fig. 7.6.

We observe that the use of the in-silico data (added scaled ∆ELBO), as well as the

proposed augmented kernel lead to less distributed correlation coefficients and MSE.

However we see from the position-wise individual results (see 7.7) that the values for

the introduced kernel have generally been constant, which can result in more compact

MSE values. The results for the proposed kernel show next to no correlation for the

majority of the positions. For Ubiquitin and β-Lactamase we observe an improvement

on the mean of the correlations, which we do not observe for Protein-G. We get a mGP

mean of > 0.4 and < 0.5, with a higher correlation when adding the in-silico informa-

tion for β-Lactamase. It is also the case, that we observe a significant improvement of

the correlations for Ubiquitin, including the in-silico data.

The latent embedding of β-Lactamase had the highest reported correlation, therefore

we would have assumed the highest performance when incorporating in-silico val-
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ues. There is in general an improvement in correlations of positions evident - this is

underlined by the position-wise analysis in supplementary Fig. 7.7. Combining the

DES-kernel and in-silico data does not yield an improvement; neither for Ubiquitin nor

β-Lactamase.

A tabular overview over the prediction metrics per position of the positional cross-

validation can be found in supplementary tables 7.5 and 7.4.

We have assessed the performance of the individual methods through position-level

cross-validation. We have observed an improvement from including the in-silico values,

however not for the protein with the uncorrelated latent embedding (PGA).

Lastly, we want to investigate the performance and properties of individual predictions

against the experimental values. One feature that distinguish probabilistic models

like Gaussian Processes from other methods are uncertainty estimates per prediction.

We are going to utilize this to get an estimate of the predicted values. For individual

investigation three randomly selected β-Lactamase variants are displayed in Fig.4.9.

We can see the predicted growth factor (x-axis) against the measured value (y-axis)

from mGP (left), mGP+∆ELBO (middle) and mGP+DES-kernel (right). From mGP

to mGP+∆ELBO, we observe slight adjustments on the y-axis, which is a trend that

is confirmed for the overall predictions (see Appendix Fig. 7.7). From the computed

covariances, we obtain the standard-deviation, which is a suggested uncertainty that

decreases when we add in-silico information. Per prediction a grey curve describes the

uncertainty per estimate, as we rely on Normal distributions as an underlying assump-

tion. Given that we have an overall improvement in the correlations and a decrease in

the MSE we expected a decrease in uncertainty, when incorporating in-silico ∆ELBO

information. The use of the DES-kernel, leads to a slight reduction in the uncertainty

and a shift on the y-axis. This does not compensate for the uncorrelated results.

In conclusion, we have seen that the performance trend, for the overall results, when in-

corporating transformed in-silico data, leads to a slight improvement on the predictions

and a reduction in the standard-deviation per prediction.
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Figure 4.8: Performance over positional results for position level CV.
Results of spearman r correlation (left plot) as well as mean-squared-error (right plot)

from each position for each protein (x-axis: 1FQG, 1UBQ, 1PGA). For mGP (blue),
mGP with ∆ELBO (orange) runs added, mGP with DES-kernel (green) and the

combination of both ∆ELBO and DES-kernel (red). Metrics have been computed for
each run-configuration (25%, 50%, 100% training data), while the boxplot accounts
for all results per protein. See appendix for an overview of the individual results 7.5.

Figure 4.9: Selected individual predictions from position-level CV.
Selection of three β-Lactamase measurements (y-axis) with their respective

predictions (x-axis) and predictive covariance (red-band) and a grey, Gaussian band as
the resulting distribution around each prediction. We compare mGP (left) with mGP

added ∆ELBO (middle) and mGP with the DES-kernel (right).
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5Discussion

5.1 Limitations of the Conducted Case-Studies

The obtained results are a limited experimental validation for the proposed concepts.

More experimental results have to be collected, from different quality latent embed-

dings, before definitive statements can be made. The obtained results suggest, that

adding the transformed ∆ELBO values do improve predictions, both for the correlation

of the predicted values, as well as the trend inMean-Squared Error (MSE). However,

improvements could not be achieved for the investigated variants of Protein-G, which

was anticipated, as this protein held almost no correlation of the latent representation

log-ratio against experimental observations. The correlation of β-Lactamase were not

as strong as initially assumed. The latent representation had a correlation coefficient

greater than 0.6, however the mean over the cross-validations did not tend to 0.6 -

even though the overall performance per position displayed better correlations (see

Fig. 7.5). In the final assessments, differences arise when assessing the performance

of the mGPfusion method, based on cross-validation and the performance of the VAE

based approach; due to the nature of cross-validation.

5.1.1 Cross-Validations for Proteins

During experimental conduct cross-validation has been performed, to give an assess-

ment of the method: we iterate over all data-splits as to have one portion of the data

for training and the rest for testing, such that after the CV run, all potential parts of

the data have been in the training data-set or in the testing data-set at one point in

time. The CV protocol presented in [38] was used for comparability of the results.

This allows for a generalizable assessment, compared to just observing the distinct

positions or single splits. However, this experimental conduct does not apply to the

Deep Sequence method. The values e.g. log-likelihoods were directly computed from

the model and no hold-out dataset or cross-validation has been conducted. Though,

during training of the model we perform a split into training and validation data for

fitting the VAE, we do not assess the performance of the VAE on the final distinct

test-set. Evaluating the latent variable model in this context is not directly comparable

to the mGPfusion method, which has to be taken into consideration when assessing

the results.

The performance reported through this conduct is lower than with mutational-level CV,
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as is supported by the results of mGPfusion [38]. In this context mutation level means

Leave-One-Out cross-validation where we leave out one mutational variant at a time

[28, p. 243]. Another viable form of CV is to randomly select whole segments of the

protein for exclusion and evaluate against the rest. Mutation level CV has not been

conducted for this work, and it should be noted that mutation level CV performs at

least as good and in the majority of cases better than position level cross-validation.

This can be explained, because we eliminate only one mutational variant at a time.

This potentially exposes the prediction for a position that is currently in testing to take

into account values from the other variants that are available at that position. When

we eliminate all variants from one position at a time, as we do in position level CV we

have a harder problem to solve.

Performing efficient and informative cross-validation on protein data is an open issue

in Bioinformatics and Machine Learning in Life Science [45, 39].

5.1.2 Impact of Assessed Metrics

In our case-studies and with reference to previous work we use the (root-)mean

squared error, a correlation measure ρ and the spearman r correlation coefficient.

We compute the correlation of the predictions to the underlying true experimental

observations. Furthermore we measure how much the predictions differ from the

experimental measures by the mean squared error. This estimate specifically might

hide information differences - e.g. we have constant predictions which will result in

lower MSE values than an equally bad model that results in volatile predictions. Using

both methods to assess the methods gives us a clearer picture. However either metric

by itself can be misleading.

The results with respect to the (R)MSE appear to increase with an increase in available

training data. However, we would expect the opposite to happen, such that when

we increase the data-set we get a decrease in error for our predictions. One way to

investigate this behavior is sampling from the prior distributions, making predictions

and assessing the with an increase in data-set size. If this behavior is consistent, it

could suggest that sub-sampling from the same training data leads to overly optimistic

estimate for smaller sample sizes. As we evaluate the discrepancy between the pre-

dictions and the true underlying data, with more data from the same distribution we

get an increase of in-sample error [28, p. 228]. Further investigation into the error

estimate is required.
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5.1.3 Why the sum of log-likelihoods is not a good assessment with
respect to the structure of the protein

In our workflow we integrate prior information through different means. One of the

ways we integrate information that we have of our problem domain, while reducing

computational complexity is through the structure information, obtainable from pdb

files. From the coordinates we derive neighborhoods and from neighborhoods we

derive contacts in order to assess the residues with the residues that it is in closer

contact with. We assess the covariance of variants by the weighted sum over the

sequence and a variant sequence also by incorporating the sum over the neighbors. I

argue that this is potentially not a good way to integrate structure information.

One of the shortcomings is that in most cases, the structure of a protein to a variant

does not account for structural changes. Substitutions of bigger impact mutations

or multiple position substitutions within a variant have the potential to disrupt the

structure of a protein [22]. In our model we do not account for such changes to the

structure in from our mutational variants.

I argue that there need not be an explicit structure formulation necessary for the

computation of covariance values and likelihood assessments of protein variants. One

extending hypothesis is that a well-aligned MSA captures structural information in

itself, implicitly. For example, current state of the art models can make structural

predictions while having only learned from sequences [69]. By fitting deep learning

models we can learn structural information implicitly from the variant sequences.

We require the structural information if we conduct something like a position-specific

substitution likelihood for our kernel. The results show that this is not optimal and

incorporating the structural information in a different way, liberates us from the restric-

tion that mutational variants impact contacts and structure in the protein, which we

cannot sufficiently model from the contacts derived from a pdb file. Utilizing informa-

tion captured from learned representations can be element for further investigations

and has the potential to improve covariance kernel computations.

5.2 Review on the VAE Work

Throughout this work, we have taken a look at two different state of the art models

and their evaluation under a variety of conditions. For example the Deep Sequence

approach takes into account multiple design choices to optimize the VAE results, which

were not accounted for in this work. An ablation study has been conducted by the

authors of the Deep Sequence method on the architecture choices associated for the
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VAE (see Supplementary 5 [68]). This can be viewed critically because the optimal

model is derived empirically. Machine Learning theory indicates that sparsity layers

and mappings can improve on (probabilistic) model performances [55, pp.386-387].

The predictions by the Deep Sequence have been made with an ensemble of VAEs.

In total the VAE implementation for this experimental result lacked different prior

initialisation, sparsity layers, and linear mappings with respect to the Deep Sequence

model. The underlying motivation for the model parameter choices offers the potential

to be explored in depth apart from its experimental justification.

It has to be added that, not all experimental measurements were reported in the

predictions made from the VAE ensemble. Specifically positions, which showed too

many gaps in the underlying training MSA have been excluded, (see supplementary

tables in 3 [68] and [32]). In the benchmark results of this work all experimental

observations for all positions were reported.

5.2.1 VAE Latent Information

Assessing the potential impact that a prior distribution has, leads us directly to the

learned latent representation of the VAE. The results suggest, that given a higher

correlated latent embedding can give rise to a better in-silico substitute. We discuss

the hypothesis that more diverse MSAs can lead to better predictions of the model.

Further investigation is required into, how the highly correlated log-likelihood of our

example β-Lactamase do not yield improvements in the same order of magnitude when

incorporated as in-silico information. One starting point is to investigate if this also

applies to other proteins, with diverse MSAs, which have high correlations, such as

β-Glucosidase or YAP 1 (see Fig. 3 in [68]). This is directly related to the potential

research question, what relationship exists between the correlation of the log-likelihood

ratio and the experimental values with a decrease in correlations and the impact on

the improvement factor towards mGP.

The method presented in this thesis relied on using an optimized encoder-decoder

architecture to capture good correlations for e.g. β-Lactamase. The performance

of the VAE presented in this work is therefore not optimal. The built models were

optimized with respect to β-Lactamase. The presented architecture has not been

optimized for Ubiquitin or Protein-G. One can find an optimal architecture for each

protein by running an optimization routine to iteratively fit different VAEs on a subset

of different experimental data, which would result in different but optimized VAE

hyper-parameters per protein.

Lastly, the Deep Sequence method found significant improvements using sparse-layers
and linear-mappings with their Variational Auto-Encoders [68].
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5.2.2 Assessing the Effect of Different Priors

Previous work has shown that different prior distribution for VAEs affect model proper-

ties and applicability in the domain [14, 68]. Already Riesselman’s work has shown

that different priors and initialization can lead to better results than using a standard

normal initialization.

Hyperspherical VAEs, which are based on a von-Mises distribution instead of a standard-

Normal distribution have been hypothesized to model protein sequences adequately.

Additionally the use of MSAs as a basis for training data can be viewed critically. Using

a MSA as basis for training has the potential to introduce fallacies in itself, to the

learned latent representation, which require mitigation [86].

Different prior distribution properties or derived MSA distributions have not been

assessed. The investigation into the applicability of different prior distributions and the

impact on the model-performance, offer a basis for continued work on the subject.

5.2.3 Changes in ELBO are Uninformative

The crux of the reported ∆ELBO values is that they are not directly applicable in

protein design. Even though we obtain ∆ELBO values which are highly correlated with

the true measurements of protein properties, we cannot use the values directly and

extra steps are required to transform the values to an applicable range. This might

pose a hurdle in the practical work with the models. In this work we have shown

that Bayesian Regression is one means to do this. One can use a small subset of the

experimental observations to fit a transformation function. Once a transformation

function has been obtained, one can work with the transformed ∆ELBO values. I

argue that Bayesian Regression is a good method to perform this. We can rely on small

subsets and use MCMC inference to compute the posterior. Further we get uncertainty

estimates with our σ of the transformation function. This can be used downstream in

the GP regression noise term.

One can argue that Variational Inference may be applicable to fit the regression,

however MCMC can better guarantee exactness - a topic which has been explored

in Salimans, Kingma et al [73]. Overall, Bayesian Regression is a suitable tool for

transformation of in-silico values.
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5.3 Kernel Function Likelihoods and their Interpretation

The initially proposed covariance function does not give rise to a positive semi-definite

kernel. This requires further analysis. Specifically the resulting log-likelihoods for the

substitution of a variant with itself is less likely than the likelihood of observing it with

respect to another variant, as is expressed in Fig. 4.6. This counters our intuition about

the intended computation. We would have assumed the likelihood of a variant with

itself to be larger or equal to the most likely other interaction. This extends to the

derived substitution matrices as well. As evident from Fig. 4.7 the log-likelihoods on

the diagonal are in parts lower than values on the off-diagonal. An interpretation of

this observation is that the likelihood of observing a residue being substituted is more

likely than it staying the same.

As an example, let us consider two sequences X,X ′ of length 250 which vary in one

residue at the same position i. This case is comparable to the assessment for the variants

of β-Lactamase. When scoring the elements xj, x′j such that j 6= i, with the proposed

function, we may find an A, and so we get a log-likelihood from S(A,A′) = log( p(A↔A′)
p(A)p(A′) .

In this example, the encoder is the same for both sequences, the latent zx is nearly the

same as zx′. In order to get a large log-likelihood value we would require p(A ↔ A)
to be sufficiently large. However, we expect p(xj = A|zx)p(x¬j) is nearly identical to

the term observed for x′, also p(A) is nearly identical to p(A′) and so are the values

obtained from q. All in all, we do not get a large log-likelihood, even though we

just queried for a A↔ A substitution. This makes the proposed covariance function

problematic for the evaluation of single-site mutational variants.

A potential mitigation would be to add to the diagonal in order to explicitly express

our belief in the conservation of this residue or to find an alternative treatment of a

residue substitution with itself. In the experimental conduct we make this explicit by

the fact that we add a constant to the diagonal.

There exist different means to make the covariance matrix positive semi-definite.

Instead of min-max normalization of the S-values, one could apply the exponential

function, as to ensure positive values. However this would convert the log-likelihoods

to likelihood values.

5.3.1 Why We don’t get a BLOSUM Matrix

In the experimental runs, we have computed the log-likelihood values from our

covariance functions to assess the likelihood of a substitution at a given position. Not

assessing a specific amino-acid configuration at a position allows us to compute a
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more general overview of the log-likelihoods given the covariance function, e.g. a

substitution matrix. We notice substantial differences between the substitution-like

matrices that we compute and the original substitution matrices like BLOSUM, PAM

and others - compare Fig. 4.7 and Fig.7.1. One major difference is the diagonal. Our

covariance function suggests that the likelihood of observing a substitution from one

residue towards a residue of the same type, given the likelihood of the sequence - is

lower or the same as the substitution to another residue. The original substitution

matrix suggests that observing the likelihood of a substitution of the residue with itself

is more likely than to another residue - in the majority of the cases. Making a same-

residue substitution more explicit, potentially improves the covariance function and

subsequently the substitution matrix equivalent. We always evaluate the substitution

matrix and likelihoods of the sequence-elements in the context of the latent random

variable. Taking into account artifacts that arise from the VAE such as a standard

Normal prior.

I argue, that if we get a BLOSUM-like matrix with higher likelihood values across the

diagonals we would subsequently get definite covariance kernel values. Fixing this

discrepancy may lead to a corrected covariance function and further investigation is

required.

5.4 Research Outlook

The reported work only looks at one covariance function. Here we explore what

different potential kernels could be used in the context of the latent embedding. Instead

of assessing the likelihoods of potential position specific interactions of residues we

can also: (a) assess the spatial relations in the latent representation or, (b) use a Fisher

kernel that takes into account the derivatives of the VAE optimization. By doing so

we also eliminate the need to sum over the sequences and neighborhoods, taking into

account explicit structure information.

Since publication in 2018, the Deep Sequence method has since been outperformed

by transformer models [69]. This suggests that using information based on language

models can be the next step in improving the workflow. For example replacing the VAE

architecture with a transformer model and deriving something like a log-likelihood

value to incorporate in a GP regression workflow may lead to better performance than

VAEs.
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5.4.1 Enabling Learning on Problematic Sequence Alignments

The VAE approach relies on a well-aligned, diverse MSA of sufficient quality. Failing

to build a MSA for the problem domain means low to none improvement or limited

applicability of the Deep Sequence or VAE based approaches. This also affects our

proposed workflow and results in a low-performance of Protein-G when incorporating

MSA information. Recent research has shown that the use of Auto-Regressive mod-

els can mitigate shortcomings of MSA based alignments and enable better method

developments without the need of prior alignments [76]. This work greatly benefits

future research into the development of models which capture latent information on

unaligned sequences. However using models from natural language processing in

general can be a benefit for the method.

5.4.2 Quantifying Distances in VAE-Space

A potentially different treatment of the likelihoods in the latent embedding can be the

interpretation of them as coordinates in the representation. One hypothesis would be

that variants closely related to one-another are closer related in the latent space as

well. This could already be useful for applying a stationary distance kernel from the

likelihoods of the derived latent embedding.

Defining a covariance function like that does not allow the derivation of likelihoods at

individual positions as is currently done. A coordinate in the latent space represents

one sequence. It could be argued, that variants of single residue difference are closely

situated around an area in the latent representation. However, queries for position

specific residues cannot be made.

5.4.3 Fisher-Kernel Covariance Functions

A different and more involved approach to quantify the distance of the latent represen-

tations is to account to the derivatives of the latent representations as well. One way

to achieve this is through a kernel as proposed in [88, p. 102]:

k(x, x′) = φTθ (x)M−1φθ(x′).

In this case M is strictly positive and can be a Fisher information matrix, making this a

Fisher kernel. An alternative and easier computation for M is the identity matrix.

If we make the assumption that higher order information such as structural information,
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can also be captured in the derivatives of the optimized latent representation of the

VAE, the Fisher kernel can utilize this.

5.4.4 Potential in Advanced MKL

The mGPfusion workflow uses multiple kernel learning with different substitution

matrices. One potential improvement for future work can be the integration of different

kernels together. Now that we have proposed different variants of other potential

kernels, we could again optimize for the weighted sum of the covariance matrices.

This would mean combining the matrices computed from e.g. a distance kernel, Fisher

kernel and e.g. the matrices computed from BLOSUM together. An implementation

would allow to assess the weights from the MKL, which would indicate which kernel

performs best for certain proteins. Again, the explicit structural information would

be required for the classical BLOSUM based covariance matrix, but not taken into

consideration for distance calculations. Both result in a covariance matrix, the weighted

sum of which can be optimized.

5.4.5 Combatting Complexity

An inherent problem of the Gaussian Process regression approach is, that GPs do not

scale well with an increase in the amount of data, since the complexity is O(n3). When

we want to extend this model to larger proteins or a multitude of variant sequences

we have to take into account a cubed increase in runtime. There exist approaches

to mitigate this issue. One can incorporate sparse approximate GPs as proposed by

Candela and Rasmussen [64, 52]. Sparse approximations hold the potential to reduce

complexity and run-time of the operations which would allow to better scale this

method.

5.4.6 Fourier Transform for Kernel Analysis

One analysis that has not been conducted with respect to the proposed covariance

function is the Fourier analysis to extract spectral information [88, p.207-208]. The

motivation of this analysis in the case of stationary covariance functions is that fre-

quencies in the underlying signal, captured by the covariance function can be analyzed.

This work has not been done due to the fact, that the kernel performed sub-par within

the mGP workflow and due to time-constraints, and its low-rank properties.
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5.5 Approximate Models break Closed-form GP
Computations

One can use Gaussian Processes for closed-form computation to solve regression

problems. This can allow insights into the model through likelihood evaluations, effect

of the priors, data fit and others. However, our proposed method breaks the closed

form computation by including two separately optimized methods, namely the VAE and

a Bayesian Regression model. It is true, that we still have a log-likelihood formulation

for kernel learning, which can be optimized. Now, the goodness of fit relies in part of

the results from the covariance function. Our covariance function in turn, is the result

of an approximation deep-learning based model. We have extra layers of uncertainty

that are associated with the properties of the VAE architecture. This also includes the

hyperparameters that are involved in obtaining an optimal architecture, which in turn

can provide an optimal covariance function.

In order to make the whole computation closed-form, end-to-end computable, one can

consider Deep Kernel learning (DKL) [89]. With methods such as DKL we can optimize

the latent representation or any other model, from which we derive a covariance

function and optimize in closed form with respect to the output of the Gaussian Process

regression.
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6Conclusion

In this work we have introduced different methods for protein variant property predic-

tions, namely the supervised mGP approach and the unsupervised learning from MSA

sequences through a VAE. This work shows, that the mGPfusion method is applicable

to other protein properties, such as growth factors.

We succeeded to introduce information from learned latent representations into the

Gaussian Process regression workflow. The two proposed ways to achieve this was to

add the change in the log-likelihood (∆ELBO) or deriving a covariance function based

on the VAE. We succeeded in fitting a function to transform ∆ELBO into an applica-

ble range to constitute in-silico values. Given that we have a good base-correlation

between log-likelihood ratios and experimental observations adding an in-silico substi-

tute, improves predictions for β-Lactamase and Ubiquitin. If the latent representation

does not show correlations as was the case for Protein-G, there is no benefit in adding

∆ELBO values.

We succeeded in deriving a covariance function from the latent embedding. The

resulting matrix is not a covariance kernel, as it is not p.s.d.. It is required to enforce

such kernel properties on the computed covariance function values, in order for it to

be applicable to Gaussian Process regression. Using the adapted covariance kernel in

this context leads to no observed correlation of the predictions.

Other means to quantify the relations of the protein variants have been discussed, such

as deriving a distance kernel from the latent representation or a fisher kernel for future

work.

Furthermore the mGP workflow depends on explicit structure information, from which

the contacts are derived before covariance matrices can be computed; this can be

considered a bottleneck. I suggest, that closed form learning from different deep-

learning based kernels, has the potential to improve the method. Integrating the latent

representation directly and not optimizing a sequence-based model separately can be

implemented through closed-form Gaussian Process regression.

The presented method contributions are a state of the art protein variant property

prediction, that incorporates available information from protein structure, family

sequence alignments, derived in-silico values and experimental observations. The

Gaussian Process regression offers a framework to combine different input values for a

range of protein properties and provides uncertainty estimates with its predictions.
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7Supplementary Information

7.1 Metrics for Assessing Predictions

In order to assess the predictions made by models we rely on well established methods,

which have also been used in the initial reports of the presented methods. We assess

the correlation by spearman’s rank correlation coefficient r in the range of −1 and 1.

Given two samples X, Y and their ranks denoted as rankX , rankY it is defined as (see

[79, p. 447]):

r = cov(rankX , rankY )
σrankX

σrankX

. (7.1)

For a more detailed definition see [94, p. 367]. With respect to the method assessment

reported in the supplementary data [38, p. 2], we report the correlation coefficient ρ

as:

ρ =
∑N
i (yi − ȳ)(µ(xi)− µ̄)√∑N

i
∗(yi − ȳ)2∑N

i
∗(µ(xi)− µ̄)2

. (7.2)

The difference between predictions and true observed values is reported as the mean-

squared error and root-mean-squared error (see [38, p. 2], [55, p. 220]):

mse = 1
N∗

N∑
i

∗(yi − µ(xi))2), (7.3)

and rmse =
√

mse.

7.2 Method and Implementational Details

The pdb files were processed with biopython v1.78 [8] and coordinates calculated

using scipy.spatial v1.6.0 . Bayesian Regression, the VAE as well as the proposed

kernel were implemented with Pyro v1.5.1 [6] and PyTorch v1.7.1+CPU [60]. The

Gaussian Process Regressor was implemented in PyTorch and Numpy v1.20.1 [27]. As

a framework to collect experimental results for cross-validation and model training,

MlFlow v1.14.1 [92] was used. Experiments were run on an Intel i7 4700MQ CPU

with 32 GB RAM, and a workstation with an Intel Xeon CPU E5+2687Wv2. Plots

and figures were created using Python’s matplotlib v3.3.3 [34] and seaborn v0.11.1
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[85] and figures composed in draw.io . The code is available upon request on the

github repository of the author pro_tooling, the commit at the time of submission is on

parent 28a3cc - commit: 324117fc0af02fd69c70bee2cd522b68759a1d78, last updated

30/05/2021 at 15:21 o’clock. Further details can be found in the project directory.

7.3 Multiple Sequence Alignment

The MSAs were generated in accordance with the MSAs from [32]. That entailed:

1. searching the protein fasta against UniRef100 database [81] over 5 iterations

using HMM search jackhmmer [20], for PGA HHblits was used [67] [93],

2. the bit-score threshold was set to 0.5 bits
residue , unless less than 80% coverage against

the target sequence was achieved,

3. if not enough coverage was achieved the threshold increased by 0.05 bits/residue

per step, vice versa if too many sequences there was a step-wise decrease,

4. goal was a count of non-redundant sequences n ≥ 10L,

5. exclusions of sequences with ≥ 30% gaps or less than 50% alignment against the

target sequence.

The properties for the Protein-G MSA were relaxed to E=0.1 and 10% acceptance
probability for sequences.
hhblits -cpu 8 -i ../results/7566882.in.a3m -d /cluster/toolkit/production/databases/hhblit-

s/UniRef30 -o

/ebio/toolkit_rye/user/toolkit/production/jobs/7566882/results/7566882.hhr -oa3m

/ebio/toolkit_rye/user/toolkit/production/jobs/7566882/results/7566882.a3m -e 0.1 -n 5 -p

10 -Z 5000 -z 1 -b 1 -B 5000
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7.4 mGP Benchmarks

mutations
Protein PDB ID experimental in-silico
T4 Lysozyme 2LZM 349 3116
Protein-G 1PGA 89 1064
Ribonuclease H 2RN2 83 2945
Cold shock protein B 1CSP 80 1273
Apomyoglobin 1BVC 80 2907
Hen egg white lysozyme 4LYZ 63 2451
Ribonuclease A 1RTB 57 2356
Hydrolase, Guanyloribonuclease 1RGG 54 1824
Bovine pancreatic trypsin inhibitor 1BPI 53 1102
TEM-1 β-Lactamase 1FQG 4799 0

Total 5707 19038

Table 7.1: A Selection of 10 proteins used for the initial evaluation on the mGPfusion reference
data. The experimental mutations of the first 9 proteins are from the ProTherm
database as reported in [38]. The in-silico point-wise mutations are results from
Rosetta simulations. Lastly 1FQG does not have in-silico simulations, as this data
was not part of the original mGPfusion analysis.
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measure ρ rmse
CV pos.lvl. pos.lvl.

Protein Method
1BVC mGPfusion -0.112626 1.462445

2σ mGPfusion -0.122320 1.459480
NO mGPfusion -0.129107 1.473530
NO 2σ mGPfusion -0.132961 1.433076

2LZM mGPfusion 0.653866 1.639737
2σ mGPfusion 0.621332 1.737129
NO mGPfusion 0.653866 1.639737
NO 2σ mGPfusion 0.621332 1.737129

1PGA mGPfusion 0.393455 2.230193
2σ mGPfusion 0.322050 2.326907
NO mGPfusion 0.335846 2.223115
NO 2σ mGPfusion 0.226469 2.312001

1CSP mGPfusion 0.785746 1.270779
2σ mGPfusion 0.789426 1.261061
NO mGPfusion 0.801479 1.221864
NO 2σ mGPfusion 0.805904 1.206363

1BPI mGPfusion 0.018036 3.731088
2σ mGPfusion 0.076626 3.743321
NO mGPfusion 0.042360 3.556351
NO 2σ mGPfusion 0.033142 3.596703

1RGG mGPfusion 0.643692 4.794329
2σ mGPfusion 0.638577 4.820200
NO mGPfusion 0.744636 3.589416
NO 2σ mGPfusion 0.713534 3.566745

1RTB mGPfusion 0.674564 2.116296
2σ mGPfusion 0.692725 2.054498
NO mGPfusion 0.647827 2.209865
NO 2σ mGPfusion 0.652133 2.196515

2RN2 mGPfusion 0.713904 1.129753
2σ mGPfusion 0.716456 1.104862
NO mGPfusion 0.674966 1.125409
NO 2σ mGPfusion 0.618044 1.197871

4LYZ mGPfusion 0.295430 1.498755
2σ mGPfusion 0.271164 1.526664
NO mGPfusion 0.308895 1.489939
NO 2σ mGPfusion 0.275442 1.525041

1FQG mGPfusion -0.153751 2.463955
2σ mGPfusion - -
NO mGPfusion 0.046418 2.501896
NO 2σ mGPfusion - -

Table 7.2: Initial Benchmark of the methods overview.

The mGPfusion is the method as proposed in the paper [38] and the initial benchmark
has been conducted on a subset of the original method benchmark proteins with data
from the Protherm database. The 2σ prefix indicates that noise has been applied twice,
as in the mGPfusion implementational code. The NO prefix stands for no optimization
and indicates that no optimization routine was run, but MKL was used under default
settings.
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7.5 VAE Specifications

Details
prior standard Multivariate Normal N(0, 1)
Encoder, p FFNN with 1700 nodes, from one-hot encoded input
latent representation, z 55

Architecture

Decoder FFNN with 1200 nodes, added dropout-layer (p=0.065), and Categorical label-encoded output.
Optimizer Adam Optimizer
learn-rate 0.000027
weight-decay 0.0007
batchsize 128
epochs 200

Optimization

validation set 10%

Table 7.3: VAE architecture used for experiments with BLAT, UBQ, PGA.

7.6 The Vectorized Kernel

Listing 7.1: The vectorized Python kernel

@torch . no_grad ()
def l o g _ l i k e l i h o o d ( s e l f , x : torch . Tensor , i : in t ) −> np . array :

" " "
r e t u r n s l og l i k e l i h o o d o f s equence at index i
shape : N x 1
i n t e r n a l shape : N s equen c e s x n samples x AA dims
" " "
N, L = x . shape
c = L*np . log (20)
oh_x = s e l f . convert_one_hot ( x )
# compute x and y l i k e l i h o o d s
z_x_loc , z_x_sca le = s e l f . vae . encoder ( oh_x )
z = z_x_ loc + s e l f . l a tent_sample [ : , np . newaxis ] * torch . s q r t ( z_x_sca le )
q_z_x = Normal ( z_x_loc , z_x_sca le ) . log_prob ( z ) . to ( torch . f l oa t64 ) .sum(−1)
p_z = torch . mean( s e l f . p_z , a x i s =0) # p r i o r mean a c r o s s samples
# decoder can only e v a l u a t e one z at a t ime
c a t e g o r i c a l s = [ C a te g o r i c a l ( s e l f . vae . decoder ( z_ i ) . to ( torch . f l oa t64 ) . exp ( ) ) for z_ i in z ]
p_x_z_vec = torch . s t a ck ([ ca t . probs . log ( ) . to ( torch . f l oa t64 ) for ca t in c a t e g o r i c a l s ])
p_x_z = torch . s t a ck ([ ca t . log_prob ( torch . Tensor ( x ) ) . to ( torch . f l oa t64 ) for ca t in c a t e g o r i c a l s ])
p_x_not_ i = s e l f . p_x_not_i ( p_x_z=p_x_z , p_z=p_z , q_z_x=q_z_x , c=c , i=i , L=L)
l l _ x _ i _ x _ n o t _ i = torch . mean( p_x_z_vec [ : , : , i ] + p_x_not_ i [ : , : , np . newaxis ] − ( q_z_x /L ) [ : , : , np . newaxis ]

+ ( c/L) + ( p_z/L ) , a x i s =0)
return l l _ x _ i _ x _ n o t _ i

@torch . no_grad ()
def p_x_not_ i ( s e l f , p_x_z : torch . Tensor , p_z : torch . Tensor , q_z_x : torch . Tensor , c : f loat , i : int , L : in t ) −> torch . Tensor :

" " "
As d e f i n e d in equat ion , sum over log−l i k e l i h o o d s
=> p(X_1=x_1 , X_2=x_2 , . . . , X_L=x_L ) not i n c l u d i n g X_i
" " "
p_x_not_ i_ lower_ idx = torch .sum( p_x_z [ : , : , : i ] + ( p_z/L) − ( q_z_x /L ) [ : , : , np . newaxis ] + ( c/L ) , a x i s=−1) # sum per s equence
p_x_not_ i_h igher_ idx = torch .sum( p_x_z [ : , : , ( i +1):] + ( p_z/L) − ( q_z_x /L ) [ : , : , np . newaxis ] + ( c/L ) , a x i s=−1)
return p_x_not_ i_ lower_ idx + p_x_not_ i_h igher_ idx

@torch . no_grad ()
def l o g _ l i k e l i h o o d _ i d x ( s e l f , x : torch . Tensor , i : in t ) :

c = x . shape [1]*np . log (20)
p_x = C a t eg o r i c a l ( s e l f . vae . decoder ( s e l f . compute_encoder_dist ( x ) . l o c ) . exp ( ) ) . log_prob ( torch . Tensor ( x ))
l l = s e l f . l o g _ l i k e l i h o o d (x , i ) . to ( torch . f l oa t64 ) − c
p_x_not_ i = torch . log ( torch .sum( torch . exp ( l l ) , a x i s=−1))
normal ized_p_x_i_x_not_ i = torch . diag ( l l [ : , x [ : , i ] ] ) − p_x [ : , i ] − p_x_not_i
return normal ized_p_x_i_x_not_ i . detach ( ) . numpy ( ) [ : , np . newaxis ]
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7.7 S-Matrix Additions

7.7.1 Original Substitution Matrices

Figure 7.1: 22-29 PAM and BLOSUM45 matrices.
Original substitution matrices added for comparison against obtained matrices [29,

10].
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7.7.2 Outer Product of Random Normal Vector

Figure 7.2: Matrix obtained from a random normal vector.
The absolute value of a vector ~v of size 21 was taken, ~v = (v1, v2, ..., v21)T , with

vi ∼ N (0, 1) and a matrix M obtained from the log of the outer-product
M = log(~v × ~vT ). The matrix shows block-artifacts comparable to the ones in the

SV AE matrices.
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7.8 DES-Kernel Additions

(a) x are covariance function values for
Ubiquitin variants.

(b) x are covariance function values for
Protein-G variants.

Figure 7.4: Distribution over covariance function values.
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7.9 Results over Positions

Figure 7.5: Results over positions.
Position level CV run with results per positions for the training subset of 25%, 50%

and 100% were recorded. The mean values over the three runs are marked with bold
dots, the min and max values of the results are marked as + over and under the mean
per position. The results are reported for A) the mGP method, B) the added ∆ELBO

and C) the DES-kernel, with the left column for spearman-r correlation values and the
right column mean-squared error.
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7.10 Additional Benchmark Results

Figure 7.6: Overall predictions from 25%, 50%, 100% CV runs.
The total overall ρ, spearman r and root-mean-squared error has been computed from
all predictions against all experimental observations. The runs were three different

settings: sampling either 25%, 50% or 100% of training data from mutational variants
per position-level cross-validation step for the mGP (blue), mGP+∆ELBO (orange),
mGP+DES-kernel (green) and combination of ∆ELBO and kernel (red) per protein.

We observe that the values for 25% CV runs are generally smaller than 100%.
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7.11 Individual Predictions over Positions

Figure 7.7: Individual Predictions per Protein.
Scatterplot of experimental observation (x-axis), against predicted values (y-axis) for
the individual proteins for each method. The rows are the individual methods with A)

mGP, B) mGP+∆ELBO and C) mGP+DES-kernel. The majority of mutations are
single-site mutations (grey), with an exception of PGA, with few double mutations.
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Method pdb training spearman r mse
0.25 -0.164328 1.408669
0.5 0.191892 1.6511831FQG
1.0 0.493366 3.132168
0.25 -0.018582 1.297084
0.5 -0.002104 1.2920681PGA
1.0 0.016465 2.812843
0.25 -0.355621 0.221921
0.5 -0.361438 0.273851

mGP

1UBQ
1.0 -0.347524 0.340269
0.25 0.067843 1.418381
0.5 0.062158 1.4407791FQG
1.0 0.056879 1.444897
0.25 -0.037587 1.271349
0.5 -0.056986 1.2623621PGA
1.0 -0.042197 1.381225
0.25 -0.013916 0.104495
0.5 0.031879 0.109558

mGP+DES-kernel

1UBQ
1.0 0.028433 0.116933
0.25 0.426837 1.595190
0.5 0.428250 1.5419671FQG
1.0 0.489492 2.590010
0.25 -0.008579 1.330133
0.5 -0.020058 1.3742361PGA
1.0 -0.009393 1.389042
0.25 0.250143 0.125341
0.5 0.195530 0.157171

mGP+∆ELBO

1UBQ
1.0 0.281593 0.152261
0.25 0.013749 1.325455
0.5 -0.009021 1.3403191PGA
1.0 0.002592 1.394520
0.25 -0.076411 0.132070

mGP+∆ELBO+DES-kernel

1UBQ
0.5 -0.011264 0.149212

Table 7.5: Benchmark of results over position-wise analysis.

Per protein, per method the mean over the individual positions was taken, with respect
to the training data-split. Where 25%, 50%, 100% describes the amount of uniformly
sub-sampled training-data to conduct the position level CV run.
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